当 $$L_p$$ 曲率在 $$p\in [0,1)$$ 时接近常数时的唯一性

IF 2.1 2区 数学 Q1 MATHEMATICS
Károly J. Böröczky, Christos Saroglou
{"title":"当 $$L_p$$ 曲率在 $$p\\in [0,1)$$ 时接近常数时的唯一性","authors":"Károly J. Böröczky, Christos Saroglou","doi":"10.1007/s00526-024-02763-z","DOIUrl":null,"url":null,"abstract":"<p>For fixed positive integer <i>n</i>, <span>\\(p\\in [0,1)\\)</span>, <span>\\(a\\in (0,1)\\)</span>, we prove that if a function <span>\\(g:{\\mathbb {S}}^{n-1}\\rightarrow {\\mathbb {R}}\\)</span> is sufficiently close to 1, in the <span>\\(C^a\\)</span> sense, then there exists a unique convex body <i>K</i> whose <span>\\(L_p\\)</span> curvature function equals <i>g</i>. This was previously established for <span>\\(n=3\\)</span>, <span>\\(p=0\\)</span> by Chen et al. (Adv Math 411(A):108782, 2022) and in the symmetric case by Chen et al. (Adv Math 368:107166, 2020). Related, we show that if <span>\\(p=0\\)</span> and <span>\\(n=4\\)</span> or <span>\\(n\\le 3\\)</span> and <span>\\(p\\in [0,1)\\)</span>, and the <span>\\(L_p\\)</span> curvature function <i>g</i> of a (sufficiently regular, containing the origin) convex body <i>K</i> satisfies <span>\\(\\lambda ^{-1}\\le g\\le \\lambda \\)</span>, for some <span>\\(\\lambda &gt;1\\)</span>, then <span>\\(\\max _{x\\in {\\mathbb {S}}^{n-1}}h_K(x)\\le C(p,\\lambda )\\)</span>, for some constant <span>\\(C(p,\\lambda )&gt;0\\)</span> that depends only on <i>p</i> and <span>\\(\\lambda \\)</span>. This also extends a result from Chen et al. [10]. Along the way, we obtain a result, that might be of independent interest, concerning the question of when the support of the <span>\\(L_p\\)</span> surface area measure is lower dimensional. Finally, we establish a strong non-uniqueness result for the <span>\\(L_p\\)</span>-Minkowksi problem, for <span>\\(-n&lt;p&lt;0\\)</span>.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"174 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniqueness when the $$L_p$$ curvature is close to be a constant for $$p\\\\in [0,1)$$\",\"authors\":\"Károly J. Böröczky, Christos Saroglou\",\"doi\":\"10.1007/s00526-024-02763-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For fixed positive integer <i>n</i>, <span>\\\\(p\\\\in [0,1)\\\\)</span>, <span>\\\\(a\\\\in (0,1)\\\\)</span>, we prove that if a function <span>\\\\(g:{\\\\mathbb {S}}^{n-1}\\\\rightarrow {\\\\mathbb {R}}\\\\)</span> is sufficiently close to 1, in the <span>\\\\(C^a\\\\)</span> sense, then there exists a unique convex body <i>K</i> whose <span>\\\\(L_p\\\\)</span> curvature function equals <i>g</i>. This was previously established for <span>\\\\(n=3\\\\)</span>, <span>\\\\(p=0\\\\)</span> by Chen et al. (Adv Math 411(A):108782, 2022) and in the symmetric case by Chen et al. (Adv Math 368:107166, 2020). Related, we show that if <span>\\\\(p=0\\\\)</span> and <span>\\\\(n=4\\\\)</span> or <span>\\\\(n\\\\le 3\\\\)</span> and <span>\\\\(p\\\\in [0,1)\\\\)</span>, and the <span>\\\\(L_p\\\\)</span> curvature function <i>g</i> of a (sufficiently regular, containing the origin) convex body <i>K</i> satisfies <span>\\\\(\\\\lambda ^{-1}\\\\le g\\\\le \\\\lambda \\\\)</span>, for some <span>\\\\(\\\\lambda &gt;1\\\\)</span>, then <span>\\\\(\\\\max _{x\\\\in {\\\\mathbb {S}}^{n-1}}h_K(x)\\\\le C(p,\\\\lambda )\\\\)</span>, for some constant <span>\\\\(C(p,\\\\lambda )&gt;0\\\\)</span> that depends only on <i>p</i> and <span>\\\\(\\\\lambda \\\\)</span>. This also extends a result from Chen et al. [10]. Along the way, we obtain a result, that might be of independent interest, concerning the question of when the support of the <span>\\\\(L_p\\\\)</span> surface area measure is lower dimensional. Finally, we establish a strong non-uniqueness result for the <span>\\\\(L_p\\\\)</span>-Minkowksi problem, for <span>\\\\(-n&lt;p&lt;0\\\\)</span>.</p>\",\"PeriodicalId\":9478,\"journal\":{\"name\":\"Calculus of Variations and Partial Differential Equations\",\"volume\":\"174 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calculus of Variations and Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00526-024-02763-z\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calculus of Variations and Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02763-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于固定的正整数 n,\(p\in [0,1)\),\(a\in (0,1)\),我们证明如果一个函数 \(g:{\mathbb {S}}^{n-1}\rightarrow {\mathbb {R}}\) 在\(C^a\)意义上足够接近于 1,那么存在一个唯一的凸体 K,它的\(L_p\)曲率函数等于 g。陈等人(Adv Math 411(A):108782, 2022)曾针对\(n=3\), \(p=0\)证明了这一点,而陈等人(Adv Math 368:107166, 2020)则证明了对称情况下的\(L_p\)曲率函数等于g。与此相关,我们证明了如果(p=0)和(n=4)或者(nle 3)和(pin [0,1)),并且一个(足够规则的,包含原点的)凸体K的曲率函数g满足(lambda ^{-1}le gle \lambda \),对于某个(lambda >;1), then \(\max _{x\in {\mathbb {S}}^{n-1}}h_K(x)\le C(p,\lambda )\), for some constant \(C(p,\lambda )>0\) that depends on only p and \(\lambda\).这也扩展了 Chen 等人[10]的一个结果。在此过程中,我们得到了一个可能会引起独立兴趣的结果,它涉及到了\(L_p\)表面积度量的支持是低维时的问题。最后,我们为 \(-n<p<0\) 的 \(L_p\)-Minkowksi 问题建立了一个强非唯一性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniqueness when the $$L_p$$ curvature is close to be a constant for $$p\in [0,1)$$

For fixed positive integer n, \(p\in [0,1)\), \(a\in (0,1)\), we prove that if a function \(g:{\mathbb {S}}^{n-1}\rightarrow {\mathbb {R}}\) is sufficiently close to 1, in the \(C^a\) sense, then there exists a unique convex body K whose \(L_p\) curvature function equals g. This was previously established for \(n=3\), \(p=0\) by Chen et al. (Adv Math 411(A):108782, 2022) and in the symmetric case by Chen et al. (Adv Math 368:107166, 2020). Related, we show that if \(p=0\) and \(n=4\) or \(n\le 3\) and \(p\in [0,1)\), and the \(L_p\) curvature function g of a (sufficiently regular, containing the origin) convex body K satisfies \(\lambda ^{-1}\le g\le \lambda \), for some \(\lambda >1\), then \(\max _{x\in {\mathbb {S}}^{n-1}}h_K(x)\le C(p,\lambda )\), for some constant \(C(p,\lambda )>0\) that depends only on p and \(\lambda \). This also extends a result from Chen et al. [10]. Along the way, we obtain a result, that might be of independent interest, concerning the question of when the support of the \(L_p\) surface area measure is lower dimensional. Finally, we establish a strong non-uniqueness result for the \(L_p\)-Minkowksi problem, for \(-n<p<0\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
4.80%
发文量
224
审稿时长
6 months
期刊介绍: Calculus of variations and partial differential equations are classical, very active, closely related areas of mathematics, with important ramifications in differential geometry and mathematical physics. In the last four decades this subject has enjoyed a flourishing development worldwide, which is still continuing and extending to broader perspectives. This journal will attract and collect many of the important top-quality contributions to this field of research, and stress the interactions between analysts, geometers, and physicists. The field of Calculus of Variations and Partial Differential Equations is extensive; nonetheless, the journal will be open to all interesting new developments. Topics to be covered include: - Minimization problems for variational integrals, existence and regularity theory for minimizers and critical points, geometric measure theory - Variational methods for partial differential equations, optimal mass transportation, linear and nonlinear eigenvalue problems - Variational problems in differential and complex geometry - Variational methods in global analysis and topology - Dynamical systems, symplectic geometry, periodic solutions of Hamiltonian systems - Variational methods in mathematical physics, nonlinear elasticity, asymptotic variational problems, homogenization, capillarity phenomena, free boundary problems and phase transitions - Monge-Ampère equations and other fully nonlinear partial differential equations related to problems in differential geometry, complex geometry, and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信