超固同位代数

Sofía Marlasca Aparicio
{"title":"超固同位代数","authors":"Sofía Marlasca Aparicio","doi":"arxiv-2406.04063","DOIUrl":null,"url":null,"abstract":"Solid modules over $\\mathbb{Q}$ or $\\mathbb{F}_p$, introduced by Clausen and\nScholze, are a well-behaved variant of complete topological vector spaces that\nforms a symmetric monoidal Grothendieck abelian category. For a discrete field\n$k$, we construct the category of ultrasolid $k$-modules, which specialises to\nsolid modules over $\\mathbb{Q}$ or $\\mathbb{F}_p$. In this setting, we show\nsome commutative algebra results like an ultrasolid variant of Nakayama's\nlemma. We also explore higher algebra in the form of animated and\n$\\mathbb{E}_\\infty$ ultrasolid $k$-algebras, and their deformation theory. We\nfocus on the subcategory of complete profinite $k$-algebras, which we prove is\ncontravariantly equivalent to equal characteristic formal moduli problems with\ncoconnective tangent complex.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasolid Homotopical Algebra\",\"authors\":\"Sofía Marlasca Aparicio\",\"doi\":\"arxiv-2406.04063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid modules over $\\\\mathbb{Q}$ or $\\\\mathbb{F}_p$, introduced by Clausen and\\nScholze, are a well-behaved variant of complete topological vector spaces that\\nforms a symmetric monoidal Grothendieck abelian category. For a discrete field\\n$k$, we construct the category of ultrasolid $k$-modules, which specialises to\\nsolid modules over $\\\\mathbb{Q}$ or $\\\\mathbb{F}_p$. In this setting, we show\\nsome commutative algebra results like an ultrasolid variant of Nakayama's\\nlemma. We also explore higher algebra in the form of animated and\\n$\\\\mathbb{E}_\\\\infty$ ultrasolid $k$-algebras, and their deformation theory. We\\nfocus on the subcategory of complete profinite $k$-algebras, which we prove is\\ncontravariantly equivalent to equal characteristic formal moduli problems with\\ncoconnective tangent complex.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.04063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.04063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由克劳森和肖尔泽引入的 $\mathbb{Q}$ 或 $\mathbb{F}_p$ 上的实体模块是完整拓扑向量空间的一个良好变体,它构成了一个对称单义的格罗内迪克阿贝尔范畴。对于离散域$k$,我们构建了超实体$k$模块范畴,它特化为在$\mathbb{Q}$或$\mathbb{F}_p$上的实体模块。在这一背景下,我们展示了一些交换代数结果,比如中山定理的超实体变体。我们还探索了动画和$\mathbb{E}_\infty$超实体$k$代数形式的高等代数,以及它们的变形理论。我们将重点放在完全无穷 $k$-gebras 的子类上,并证明它等价于等特征形式模量问题的相切复数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrasolid Homotopical Algebra
Solid modules over $\mathbb{Q}$ or $\mathbb{F}_p$, introduced by Clausen and Scholze, are a well-behaved variant of complete topological vector spaces that forms a symmetric monoidal Grothendieck abelian category. For a discrete field $k$, we construct the category of ultrasolid $k$-modules, which specialises to solid modules over $\mathbb{Q}$ or $\mathbb{F}_p$. In this setting, we show some commutative algebra results like an ultrasolid variant of Nakayama's lemma. We also explore higher algebra in the form of animated and $\mathbb{E}_\infty$ ultrasolid $k$-algebras, and their deformation theory. We focus on the subcategory of complete profinite $k$-algebras, which we prove is contravariantly equivalent to equal characteristic formal moduli problems with coconnective tangent complex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信