作为框架流形的特殊单元群 $SU(2n)$

Haruo Minami
{"title":"作为框架流形的特殊单元群 $SU(2n)$","authors":"Haruo Minami","doi":"arxiv-2406.11878","DOIUrl":null,"url":null,"abstract":"Let $[SU(2n),\\mathscr{L}]$ denote the bordism class of $SU(2n)$ $(n\\ge 2)$\nequipped with the left invariant framing $\\mathscr{L}$. Then it is well known\nthat $e_\\mathbb{C}([SU(2n), \\mathscr{L}])=0$ in $\\mathbb{O}/\\mathbb{Z}$ where\n$e_\\mathbb{C}$ denotes the complex Adams $e$-invariant. In this note we show\nthat replacing $\\mathscr{L}$ by the twisted framing by a specific map it can be\ntransformed into a generator of $\\mathrm{Im} \\, e_\\mathbb{C}$. In addition to\nthat we also show that the same procedure affords an analogous result for a\nquotient of $SU(2n+1)$ by a circle subgroup which inherits a canonical framing\nfrom $SU(2n+1)$ in the usual way.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The special unitary groups $SU(2n)$ as framed manifolds\",\"authors\":\"Haruo Minami\",\"doi\":\"arxiv-2406.11878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $[SU(2n),\\\\mathscr{L}]$ denote the bordism class of $SU(2n)$ $(n\\\\ge 2)$\\nequipped with the left invariant framing $\\\\mathscr{L}$. Then it is well known\\nthat $e_\\\\mathbb{C}([SU(2n), \\\\mathscr{L}])=0$ in $\\\\mathbb{O}/\\\\mathbb{Z}$ where\\n$e_\\\\mathbb{C}$ denotes the complex Adams $e$-invariant. In this note we show\\nthat replacing $\\\\mathscr{L}$ by the twisted framing by a specific map it can be\\ntransformed into a generator of $\\\\mathrm{Im} \\\\, e_\\\\mathbb{C}$. In addition to\\nthat we also show that the same procedure affords an analogous result for a\\nquotient of $SU(2n+1)$ by a circle subgroup which inherits a canonical framing\\nfrom $SU(2n+1)$ in the usual way.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.11878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.11878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $[SU(2n),\mathscr{L}]$ 表示$SU(2n)$(n\ge 2)$的边界类,并配有左不变帧 $\mathscr{L}$。那么众所周知,$e_\mathbb{C}([SU(2n), \mathscr{L}])=0$ in $\mathbb{O}/\mathbb{Z}$ 其中$e_\mathbb{C}$ 表示复亚当斯不变量$e$。在本注释中,我们将证明用一个特定的映射把 $mathscr{L}$ 替换成扭曲的框架,它就可以转换成 $\mathrm{Im} 的一个生成器。\e_\mathbb{C}$.除此以外,我们还证明了同样的过程可以为$SU(2n+1)$的圆子群的含水子群提供类似的结果,圆子群以通常的方式从$SU(2n+1)$继承了一个典型的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The special unitary groups $SU(2n)$ as framed manifolds
Let $[SU(2n),\mathscr{L}]$ denote the bordism class of $SU(2n)$ $(n\ge 2)$ equipped with the left invariant framing $\mathscr{L}$. Then it is well known that $e_\mathbb{C}([SU(2n), \mathscr{L}])=0$ in $\mathbb{O}/\mathbb{Z}$ where $e_\mathbb{C}$ denotes the complex Adams $e$-invariant. In this note we show that replacing $\mathscr{L}$ by the twisted framing by a specific map it can be transformed into a generator of $\mathrm{Im} \, e_\mathbb{C}$. In addition to that we also show that the same procedure affords an analogous result for a quotient of $SU(2n+1)$ by a circle subgroup which inherits a canonical framing from $SU(2n+1)$ in the usual way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信