动机稳定同调范畴中的无常变分

Haoyang Liu
{"title":"动机稳定同调范畴中的无常变分","authors":"Haoyang Liu","doi":"arxiv-2406.05674","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the motivic stable homotopy type of abelian\nvarieties. For an abelian variety over a field $k$ with a rational point, it\nalways splits off a top-dimensional cell in motivic stable homotopy category\n$\\text{SH}(k)$. Let $k = \\mathbb{R}$, there is a concrete splitting which is\ndetermined by the motive of X and the real points $X(\\mathbb{R})$ in\n$\\text{SH}(\\mathbb{R})_\\mathbb{Q}$. We will also discuss this splitting from a\nviewpoint of the Chow-Witt correspondences.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Splitting of abelian varieties in motivic stable homotopy category\",\"authors\":\"Haoyang Liu\",\"doi\":\"arxiv-2406.05674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss the motivic stable homotopy type of abelian\\nvarieties. For an abelian variety over a field $k$ with a rational point, it\\nalways splits off a top-dimensional cell in motivic stable homotopy category\\n$\\\\text{SH}(k)$. Let $k = \\\\mathbb{R}$, there is a concrete splitting which is\\ndetermined by the motive of X and the real points $X(\\\\mathbb{R})$ in\\n$\\\\text{SH}(\\\\mathbb{R})_\\\\mathbb{Q}$. We will also discuss this splitting from a\\nviewpoint of the Chow-Witt correspondences.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.05674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.05674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了无常变的动机稳定同调类型。对于一个有理点的域$k$上的无常变种,它在动机稳定同调类型$text{SH}(k)$中分裂出一个顶维单元。让 $k = \mathbb{R}$,有一个具体的分裂,它是由 X 的动机和实点 $X(\mathbb{R})$ 在$text{SH}(\mathbb{R})_\mathbb{Q}$中决定的。我们还将从周-维特对应关系的角度讨论这种分裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Splitting of abelian varieties in motivic stable homotopy category
In this paper, we discuss the motivic stable homotopy type of abelian varieties. For an abelian variety over a field $k$ with a rational point, it always splits off a top-dimensional cell in motivic stable homotopy category $\text{SH}(k)$. Let $k = \mathbb{R}$, there is a concrete splitting which is determined by the motive of X and the real points $X(\mathbb{R})$ in $\text{SH}(\mathbb{R})_\mathbb{Q}$. We will also discuss this splitting from a viewpoint of the Chow-Witt correspondences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信