{"title":"动机稳定同调范畴中的无常变分","authors":"Haoyang Liu","doi":"arxiv-2406.05674","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the motivic stable homotopy type of abelian\nvarieties. For an abelian variety over a field $k$ with a rational point, it\nalways splits off a top-dimensional cell in motivic stable homotopy category\n$\\text{SH}(k)$. Let $k = \\mathbb{R}$, there is a concrete splitting which is\ndetermined by the motive of X and the real points $X(\\mathbb{R})$ in\n$\\text{SH}(\\mathbb{R})_\\mathbb{Q}$. We will also discuss this splitting from a\nviewpoint of the Chow-Witt correspondences.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Splitting of abelian varieties in motivic stable homotopy category\",\"authors\":\"Haoyang Liu\",\"doi\":\"arxiv-2406.05674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss the motivic stable homotopy type of abelian\\nvarieties. For an abelian variety over a field $k$ with a rational point, it\\nalways splits off a top-dimensional cell in motivic stable homotopy category\\n$\\\\text{SH}(k)$. Let $k = \\\\mathbb{R}$, there is a concrete splitting which is\\ndetermined by the motive of X and the real points $X(\\\\mathbb{R})$ in\\n$\\\\text{SH}(\\\\mathbb{R})_\\\\mathbb{Q}$. We will also discuss this splitting from a\\nviewpoint of the Chow-Witt correspondences.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.05674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.05674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文讨论了无常变的动机稳定同调类型。对于一个有理点的域$k$上的无常变种,它在动机稳定同调类型$text{SH}(k)$中分裂出一个顶维单元。让 $k = \mathbb{R}$,有一个具体的分裂,它是由 X 的动机和实点 $X(\mathbb{R})$ 在$text{SH}(\mathbb{R})_\mathbb{Q}$中决定的。我们还将从周-维特对应关系的角度讨论这种分裂。
Splitting of abelian varieties in motivic stable homotopy category
In this paper, we discuss the motivic stable homotopy type of abelian
varieties. For an abelian variety over a field $k$ with a rational point, it
always splits off a top-dimensional cell in motivic stable homotopy category
$\text{SH}(k)$. Let $k = \mathbb{R}$, there is a concrete splitting which is
determined by the motive of X and the real points $X(\mathbb{R})$ in
$\text{SH}(\mathbb{R})_\mathbb{Q}$. We will also discuss this splitting from a
viewpoint of the Chow-Witt correspondences.