与非碎片操作数相关的 PROPs 的相对非均质科斯祖尔对偶性

Geoffrey Powell
{"title":"与非碎片操作数相关的 PROPs 的相对非均质科斯祖尔对偶性","authors":"Geoffrey Powell","doi":"arxiv-2406.08132","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to show how Positselski's relative\nnonhomogeneous Koszul duality theory applies when studying the linear category\nunderlying the PROP associated to a (non-augmented) operad of a certain form,\nin particular assuming that the reduced part of the operad is binary quadratic.\nIn this case, the linear category has both a left augmentation and a right\naugmentation (corresponding to different units), using Positselski's\nterminology. The general theory provides two associated linear differential graded (DG)\ncategories; indeed, in this framework, one can work entirely within the DG\nrealm, as opposed to the curved setting required for Positselski's general\ntheory. Moreover, DG modules over DG categories are related by adjunctions. When the reduced part of the operad is Koszul (working over a field of\ncharacteristic zero), the relative Koszul duality theory shows that there is a\nKoszul-type equivalence between the appropriate homotopy categories of DG\nmodules. This gives a form of Koszul duality relationship between the above DG\ncategories. This is illustrated by the case of the operad encoding unital, commutative\nassociative algebras, extending the classical Koszul duality between\ncommutative associative algebras and Lie algebras. In this case, the associated\nlinear category is the linearization of the category of finite sets and all\nmaps. The relative nonhomogeneous Koszul duality theory relates its derived\ncategory to the respective homotopy categories of modules over two explicit\nlinear DG categories.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative nonhomogeneous Koszul duality for PROPs associated to nonaugmented operads\",\"authors\":\"Geoffrey Powell\",\"doi\":\"arxiv-2406.08132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to show how Positselski's relative\\nnonhomogeneous Koszul duality theory applies when studying the linear category\\nunderlying the PROP associated to a (non-augmented) operad of a certain form,\\nin particular assuming that the reduced part of the operad is binary quadratic.\\nIn this case, the linear category has both a left augmentation and a right\\naugmentation (corresponding to different units), using Positselski's\\nterminology. The general theory provides two associated linear differential graded (DG)\\ncategories; indeed, in this framework, one can work entirely within the DG\\nrealm, as opposed to the curved setting required for Positselski's general\\ntheory. Moreover, DG modules over DG categories are related by adjunctions. When the reduced part of the operad is Koszul (working over a field of\\ncharacteristic zero), the relative Koszul duality theory shows that there is a\\nKoszul-type equivalence between the appropriate homotopy categories of DG\\nmodules. This gives a form of Koszul duality relationship between the above DG\\ncategories. This is illustrated by the case of the operad encoding unital, commutative\\nassociative algebras, extending the classical Koszul duality between\\ncommutative associative algebras and Lie algebras. In this case, the associated\\nlinear category is the linearization of the category of finite sets and all\\nmaps. The relative nonhomogeneous Koszul duality theory relates its derived\\ncategory to the respective homotopy categories of modules over two explicit\\nlinear DG categories.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.08132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.08132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在说明波西泽尔斯基(Positselski)的相对同质科斯祖尔对偶性理论如何适用于研究与某种形式的(非增量)操作数相关联的PROP下的线性范畴,特别是假设操作数的还原部分是二元二次的情况。一般理论提供了两个相关的线性微分等级(DG)范畴;事实上,在这个框架中,我们可以完全在 DG 领域中工作,而不是波西泽尔斯基的一般理论所要求的曲线环境。此外,DG范畴上的DG模块是通过邻接关系联系在一起的。当操作数的还原部分是科斯祖尔(在特性为零的域上工作)时,相对科斯祖尔对偶理论表明,在 DG 模块的适当同调范畴之间存在科斯祖尔型等价关系。这给出了上述 DG 范畴之间的一种科斯祖尔对偶关系。我们可以用编码单资本交换关联代数的操作数来说明这一点,它扩展了交换关联代数和李代数之间的经典科斯祖尔对偶性。在这种情况下,关联线性范畴是有限集和全映射范畴的线性化。相对非同调科斯祖尔对偶理论将其派生类与两个显式线性 DG 类上模块的各自同调类联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relative nonhomogeneous Koszul duality for PROPs associated to nonaugmented operads
The purpose of this paper is to show how Positselski's relative nonhomogeneous Koszul duality theory applies when studying the linear category underlying the PROP associated to a (non-augmented) operad of a certain form, in particular assuming that the reduced part of the operad is binary quadratic. In this case, the linear category has both a left augmentation and a right augmentation (corresponding to different units), using Positselski's terminology. The general theory provides two associated linear differential graded (DG) categories; indeed, in this framework, one can work entirely within the DG realm, as opposed to the curved setting required for Positselski's general theory. Moreover, DG modules over DG categories are related by adjunctions. When the reduced part of the operad is Koszul (working over a field of characteristic zero), the relative Koszul duality theory shows that there is a Koszul-type equivalence between the appropriate homotopy categories of DG modules. This gives a form of Koszul duality relationship between the above DG categories. This is illustrated by the case of the operad encoding unital, commutative associative algebras, extending the classical Koszul duality between commutative associative algebras and Lie algebras. In this case, the associated linear category is the linearization of the category of finite sets and all maps. The relative nonhomogeneous Koszul duality theory relates its derived category to the respective homotopy categories of modules over two explicit linear DG categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信