{"title":"斯密同态与 Spin$^h$ 结构","authors":"Arun Debray, Cameron Krulewski","doi":"arxiv-2406.08237","DOIUrl":null,"url":null,"abstract":"In this article, we answer two questions of Buchanan-McKean\n(arXiv:2312.08209) about bordism for manifolds with spin$^h$ structures: we\nestablish a Smith isomorphism between the reduced spin$^h$ bordism of\n$\\mathbb{RP}^\\infty$ and pin$^{h-}$ bordism, and we provide a geometric\nexplanation for the isomorphism $\\Omega_{4k}^{\\mathrm{Spin}^c} \\otimes\\mathbb\nZ[1/2] \\cong \\Omega_{4k}^{\\mathrm{Spin}^h} \\otimes\\mathbb Z[1/2]$. Our proofs\nuse the general theory of twisted spin structures and Smith homomorphisms that\nwe developed in arXiv:2405.04649 joint with Devalapurkar, Liu, Pacheco-Tallaj,\nand Thorngren, specifically that the Smith homomorphism participates in a long\nexact sequence with explicit, computable terms.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smith homomorphisms and Spin$^h$ structures\",\"authors\":\"Arun Debray, Cameron Krulewski\",\"doi\":\"arxiv-2406.08237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we answer two questions of Buchanan-McKean\\n(arXiv:2312.08209) about bordism for manifolds with spin$^h$ structures: we\\nestablish a Smith isomorphism between the reduced spin$^h$ bordism of\\n$\\\\mathbb{RP}^\\\\infty$ and pin$^{h-}$ bordism, and we provide a geometric\\nexplanation for the isomorphism $\\\\Omega_{4k}^{\\\\mathrm{Spin}^c} \\\\otimes\\\\mathbb\\nZ[1/2] \\\\cong \\\\Omega_{4k}^{\\\\mathrm{Spin}^h} \\\\otimes\\\\mathbb Z[1/2]$. Our proofs\\nuse the general theory of twisted spin structures and Smith homomorphisms that\\nwe developed in arXiv:2405.04649 joint with Devalapurkar, Liu, Pacheco-Tallaj,\\nand Thorngren, specifically that the Smith homomorphism participates in a long\\nexact sequence with explicit, computable terms.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.08237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.08237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this article, we answer two questions of Buchanan-McKean
(arXiv:2312.08209) about bordism for manifolds with spin$^h$ structures: we
establish a Smith isomorphism between the reduced spin$^h$ bordism of
$\mathbb{RP}^\infty$ and pin$^{h-}$ bordism, and we provide a geometric
explanation for the isomorphism $\Omega_{4k}^{\mathrm{Spin}^c} \otimes\mathbb
Z[1/2] \cong \Omega_{4k}^{\mathrm{Spin}^h} \otimes\mathbb Z[1/2]$. Our proofs
use the general theory of twisted spin structures and Smith homomorphisms that
we developed in arXiv:2405.04649 joint with Devalapurkar, Liu, Pacheco-Tallaj,
and Thorngren, specifically that the Smith homomorphism participates in a long
exact sequence with explicit, computable terms.