关于 6、7 和 8 球体的 33 干同调群的扩展问题

Juxin Yang, Jie Wu
{"title":"关于 6、7 和 8 球体的 33 干同调群的扩展问题","authors":"Juxin Yang, Jie Wu","doi":"arxiv-2406.08621","DOIUrl":null,"url":null,"abstract":"This paper tackles the extension problems for the homotopy groups\n$\\pi_{39}(S^{6})$, $\\pi_{40}(S^{7})$, and $\\pi_{41}(S^{8})$ localized at 2, the\npuzzles having remained unsolved for forty-five years. We introduce a tool for\nthe theory of determinations of unstable homotopy groups, namely, the\n$\\mathcal{Z}$-shape Toda bracket, by which we are able to solve the extension\nproblems with respect to these three homotopy groups.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the extension problems for the 33-stem homotopy groups of the 6-, 7- and 8-spheres\",\"authors\":\"Juxin Yang, Jie Wu\",\"doi\":\"arxiv-2406.08621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper tackles the extension problems for the homotopy groups\\n$\\\\pi_{39}(S^{6})$, $\\\\pi_{40}(S^{7})$, and $\\\\pi_{41}(S^{8})$ localized at 2, the\\npuzzles having remained unsolved for forty-five years. We introduce a tool for\\nthe theory of determinations of unstable homotopy groups, namely, the\\n$\\\\mathcal{Z}$-shape Toda bracket, by which we are able to solve the extension\\nproblems with respect to these three homotopy groups.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.08621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.08621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了同调群$\pi_{39}(S^{6})$、$\pi_{40}(S^{7})$和$\pi_{41}(S^{8})$在2处的扩展问题,这些问题四十五年来一直悬而未决。我们为不稳定同调群的确定性理论引入了一个工具,即$\mathcal{Z}$形托达括号,通过它我们能够解决这三个同调群的扩展问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the extension problems for the 33-stem homotopy groups of the 6-, 7- and 8-spheres
This paper tackles the extension problems for the homotopy groups $\pi_{39}(S^{6})$, $\pi_{40}(S^{7})$, and $\pi_{41}(S^{8})$ localized at 2, the puzzles having remained unsolved for forty-five years. We introduce a tool for the theory of determinations of unstable homotopy groups, namely, the $\mathcal{Z}$-shape Toda bracket, by which we are able to solve the extension problems with respect to these three homotopy groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信