{"title":"类别与复杂性交织","authors":"Ekansh Jauhari","doi":"arxiv-2406.12265","DOIUrl":null,"url":null,"abstract":"We develop the theory of the intertwining distributional versions of the\nLS-category and the sequential topological complexities of a space $X$, denoted\nby $i\\mathsf{cat}(X)$ and $i\\mathsf{TC}_m(X)$, respectively. We prove that they\nsatisfy most of the nice properties as their respective distributional\ncounterparts $d\\mathsf{cat}(X)$ and $d\\mathsf{TC}_m(X)$, and their classical\ncounterparts $\\mathsf{cat}(X)$ and $\\mathsf{TC}_m(X)$, such as homotopy\ninvariance and special behavior on topological groups. We show that the notions\nof $i\\mathsf{TC}_m$ and $d\\mathsf{TC}_m$ are different for each $m \\ge 2$ by\nproving that $i\\mathsf{TC}_m(\\mathcal{H})=1$ for all $m \\ge 2$ for Higman's\ngroup $\\mathcal{H}$. Using cohomological lower bounds, we also provide various\nexamples of locally finite CW complexes $X$ for which $i\\mathsf{cat}(X) > 1$,\n$i\\mathsf{TC}_m(X) > 1$, $i\\mathsf{cat}(X) = d\\mathsf{cat}(X) =\n\\mathsf{cat}(X)$, and $i\\mathsf{TC}(X) = d\\mathsf{TC}(X) = \\mathsf{TC}(X)$.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intertwining category and complexity\",\"authors\":\"Ekansh Jauhari\",\"doi\":\"arxiv-2406.12265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop the theory of the intertwining distributional versions of the\\nLS-category and the sequential topological complexities of a space $X$, denoted\\nby $i\\\\mathsf{cat}(X)$ and $i\\\\mathsf{TC}_m(X)$, respectively. We prove that they\\nsatisfy most of the nice properties as their respective distributional\\ncounterparts $d\\\\mathsf{cat}(X)$ and $d\\\\mathsf{TC}_m(X)$, and their classical\\ncounterparts $\\\\mathsf{cat}(X)$ and $\\\\mathsf{TC}_m(X)$, such as homotopy\\ninvariance and special behavior on topological groups. We show that the notions\\nof $i\\\\mathsf{TC}_m$ and $d\\\\mathsf{TC}_m$ are different for each $m \\\\ge 2$ by\\nproving that $i\\\\mathsf{TC}_m(\\\\mathcal{H})=1$ for all $m \\\\ge 2$ for Higman's\\ngroup $\\\\mathcal{H}$. Using cohomological lower bounds, we also provide various\\nexamples of locally finite CW complexes $X$ for which $i\\\\mathsf{cat}(X) > 1$,\\n$i\\\\mathsf{TC}_m(X) > 1$, $i\\\\mathsf{cat}(X) = d\\\\mathsf{cat}(X) =\\n\\\\mathsf{cat}(X)$, and $i\\\\mathsf{TC}(X) = d\\\\mathsf{TC}(X) = \\\\mathsf{TC}(X)$.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.12265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.12265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We develop the theory of the intertwining distributional versions of the
LS-category and the sequential topological complexities of a space $X$, denoted
by $i\mathsf{cat}(X)$ and $i\mathsf{TC}_m(X)$, respectively. We prove that they
satisfy most of the nice properties as their respective distributional
counterparts $d\mathsf{cat}(X)$ and $d\mathsf{TC}_m(X)$, and their classical
counterparts $\mathsf{cat}(X)$ and $\mathsf{TC}_m(X)$, such as homotopy
invariance and special behavior on topological groups. We show that the notions
of $i\mathsf{TC}_m$ and $d\mathsf{TC}_m$ are different for each $m \ge 2$ by
proving that $i\mathsf{TC}_m(\mathcal{H})=1$ for all $m \ge 2$ for Higman's
group $\mathcal{H}$. Using cohomological lower bounds, we also provide various
examples of locally finite CW complexes $X$ for which $i\mathsf{cat}(X) > 1$,
$i\mathsf{TC}_m(X) > 1$, $i\mathsf{cat}(X) = d\mathsf{cat}(X) =
\mathsf{cat}(X)$, and $i\mathsf{TC}(X) = d\mathsf{TC}(X) = \mathsf{TC}(X)$.