抽象和动机同调理论中的多面体积

William Hornslien
{"title":"抽象和动机同调理论中的多面体积","authors":"William Hornslien","doi":"arxiv-2406.13540","DOIUrl":null,"url":null,"abstract":"We introduce polyhedral products in an $\\infty$-categorical setting. We\ngeneralize a splitting result by Bahri, Bendersky, Cohen, and Gitler that\ndetermines the stable homotopy type of the a polyhedral product. We also\nintroduce a motivic refinement of moment-angle complexes and use the splitting\nresult to compute cellular $\\mathbb{A}^1$-homology, and $\\mathbb{A}^1$-Euler\ncharacteristics.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyhedral products in abstract and motivic homotopy theory\",\"authors\":\"William Hornslien\",\"doi\":\"arxiv-2406.13540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce polyhedral products in an $\\\\infty$-categorical setting. We\\ngeneralize a splitting result by Bahri, Bendersky, Cohen, and Gitler that\\ndetermines the stable homotopy type of the a polyhedral product. We also\\nintroduce a motivic refinement of moment-angle complexes and use the splitting\\nresult to compute cellular $\\\\mathbb{A}^1$-homology, and $\\\\mathbb{A}^1$-Euler\\ncharacteristics.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.13540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.13540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在$\infty$-categorical 背景下引入多面体积。我们推广了巴赫里、本德斯基、科恩和吉特勒的一个分裂结果,该结果确定了多面体积的稳定同调类型。我们还引入了矩角复数的动机细化,并利用分裂结果计算了单元$\mathbb{A}^1$同调和$\mathbb{A}^1$欧拉特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polyhedral products in abstract and motivic homotopy theory
We introduce polyhedral products in an $\infty$-categorical setting. We generalize a splitting result by Bahri, Bendersky, Cohen, and Gitler that determines the stable homotopy type of the a polyhedral product. We also introduce a motivic refinement of moment-angle complexes and use the splitting result to compute cellular $\mathbb{A}^1$-homology, and $\mathbb{A}^1$-Euler characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信