重量结构和形式

Coline Emprin, Geoffroy Horel
{"title":"重量结构和形式","authors":"Coline Emprin, Geoffroy Horel","doi":"arxiv-2406.19142","DOIUrl":null,"url":null,"abstract":"This is a survey on formality results relying on weight structures. A weight\nstructure is a naturally occurring grading on certain differential graded\nalgebras. If this weight satisfies a purity property, one can deduce formality.\nAlgebraic geometry provides us with such weight structures as the cohomology of\nalgebraic varieties tends to present additional structures including a Hodge\nstructure or a Galois action.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weight structures and formality\",\"authors\":\"Coline Emprin, Geoffroy Horel\",\"doi\":\"arxiv-2406.19142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is a survey on formality results relying on weight structures. A weight\\nstructure is a naturally occurring grading on certain differential graded\\nalgebras. If this weight satisfies a purity property, one can deduce formality.\\nAlgebraic geometry provides us with such weight structures as the cohomology of\\nalgebraic varieties tends to present additional structures including a Hodge\\nstructure or a Galois action.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.19142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.19142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这是对依赖于权重结构的形式化结果的研究。权重结构是某些微分级数布拉上自然出现的级数。代数几何为我们提供了这样的权重结构,因为代数变体的同调倾向于呈现额外的结构,包括霍德结构或伽罗瓦作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weight structures and formality
This is a survey on formality results relying on weight structures. A weight structure is a naturally occurring grading on certain differential graded algebras. If this weight satisfies a purity property, one can deduce formality. Algebraic geometry provides us with such weight structures as the cohomology of algebraic varieties tends to present additional structures including a Hodge structure or a Galois action.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信