通过 TQFT 的字符堆同调

Jesse Vogel
{"title":"通过 TQFT 的字符堆同调","authors":"Jesse Vogel","doi":"arxiv-2406.19857","DOIUrl":null,"url":null,"abstract":"We study the cohomology of $G$-representation varieties and $G$-character\nstacks by means of a topological quantum field theory (TQFT). This TQFT is\nconstructed as the composite of a so-called field theory and the 6-functor\nformalism of sheaves on topological stacks. We apply this framework to compute\nthe cohomology of various $G$-representation varieties and $G$-character stacks\nof closed surfaces for $G = \\text{SU}(2), \\text{SO}(3)$ and $\\text{U}(2)$. This\nwork can be seen as a categorification of earlier work, in which such a TQFT\nwas constructed on the level of Grothendieck groups to compute the\ncorresponding Euler characteristics.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cohomology of character stacks via TQFTs\",\"authors\":\"Jesse Vogel\",\"doi\":\"arxiv-2406.19857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the cohomology of $G$-representation varieties and $G$-character\\nstacks by means of a topological quantum field theory (TQFT). This TQFT is\\nconstructed as the composite of a so-called field theory and the 6-functor\\nformalism of sheaves on topological stacks. We apply this framework to compute\\nthe cohomology of various $G$-representation varieties and $G$-character stacks\\nof closed surfaces for $G = \\\\text{SU}(2), \\\\text{SO}(3)$ and $\\\\text{U}(2)$. This\\nwork can be seen as a categorification of earlier work, in which such a TQFT\\nwas constructed on the level of Grothendieck groups to compute the\\ncorresponding Euler characteristics.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.19857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.19857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们通过拓扑量子场论(TQFT)来研究$G$代表品种和$G$字符堆的同调。这个 TQFT 是由所谓的场论和拓扑堆栈上的剪子的 6-矢量形式主义复合而成的。我们应用这个框架计算了$G = \text{SU}(2), \text{SO}(3)$ 和 $\text{U}(2)$的各种$G$-代表品种和封闭曲面的$G$-特征栈的同调。这项工作可以看作是对早期工作的归类,在早期工作中,这样的 TQFT 是在格罗内迪克群的层次上构造的,用以计算相应的欧拉特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cohomology of character stacks via TQFTs
We study the cohomology of $G$-representation varieties and $G$-character stacks by means of a topological quantum field theory (TQFT). This TQFT is constructed as the composite of a so-called field theory and the 6-functor formalism of sheaves on topological stacks. We apply this framework to compute the cohomology of various $G$-representation varieties and $G$-character stacks of closed surfaces for $G = \text{SU}(2), \text{SO}(3)$ and $\text{U}(2)$. This work can be seen as a categorification of earlier work, in which such a TQFT was constructed on the level of Grothendieck groups to compute the corresponding Euler characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信