空动机欧拉特性的对称幂

Dori Bejleri, Stephen McKean
{"title":"空动机欧拉特性的对称幂","authors":"Dori Bejleri, Stephen McKean","doi":"arxiv-2406.19506","DOIUrl":null,"url":null,"abstract":"Let k be a field of characteristic not 2. We conjecture that if X is a\nquasi-projective k-variety with trivial motivic Euler characteristic, then\nSym$^n$X has trivial motivic Euler characteristic for all n. Conditional on\nthis conjecture, we show that the Grothendieck--Witt ring admits a power\nstructure that is compatible with the motivic Euler characteristic and the\npower structure on the Grothendieck ring of varieties. We then discuss how\nthese conditional results would imply an enrichment of G\\\"ottsche's formula for\nthe Euler characteristics of Hilbert schemes.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetric powers of null motivic Euler characteristic\",\"authors\":\"Dori Bejleri, Stephen McKean\",\"doi\":\"arxiv-2406.19506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let k be a field of characteristic not 2. We conjecture that if X is a\\nquasi-projective k-variety with trivial motivic Euler characteristic, then\\nSym$^n$X has trivial motivic Euler characteristic for all n. Conditional on\\nthis conjecture, we show that the Grothendieck--Witt ring admits a power\\nstructure that is compatible with the motivic Euler characteristic and the\\npower structure on the Grothendieck ring of varieties. We then discuss how\\nthese conditional results would imply an enrichment of G\\\\\\\"ottsche's formula for\\nthe Euler characteristics of Hilbert schemes.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.19506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.19506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 k 是一个特性不为 2 的域。我们猜想,如果 X 是具有微不足道的动机欧拉特征的类投影 k 素数,那么对于所有 n,Sym$^n$X 都具有微不足道的动机欧拉特征。在这一猜想的条件下,我们证明了格罗登第克--维特环具有与动机欧拉特征和格罗登第克素数环上的动力结构相容的动力结构。然后,我们讨论了这些条件结果将如何意味着对希尔伯特方案欧拉特征的 G\"ottsche 公式的丰富。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetric powers of null motivic Euler characteristic
Let k be a field of characteristic not 2. We conjecture that if X is a quasi-projective k-variety with trivial motivic Euler characteristic, then Sym$^n$X has trivial motivic Euler characteristic for all n. Conditional on this conjecture, we show that the Grothendieck--Witt ring admits a power structure that is compatible with the motivic Euler characteristic and the power structure on the Grothendieck ring of varieties. We then discuss how these conditional results would imply an enrichment of G\"ottsche's formula for the Euler characteristics of Hilbert schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信