{"title":"谱中可缩回操作数代数的矢量微积分补全","authors":"Matthew B. Carr, John E. Harper","doi":"arxiv-2407.01819","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to study convergence of Bousfield-Kan completions\nwith respect to the 1-excisive approximation of the identity functor and exotic\nconvergence of the Taylor tower of the identity functor, for algebras over\noperads in spectra centered away from the null object. In Goodwillie's homotopy\nfunctor calculus, being centered away from the null object amounts to doing\nhomotopy theory and functor calculus in the retractive setting.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functor calculus completions for retractive operadic algebras in spectra\",\"authors\":\"Matthew B. Carr, John E. Harper\",\"doi\":\"arxiv-2407.01819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to study convergence of Bousfield-Kan completions\\nwith respect to the 1-excisive approximation of the identity functor and exotic\\nconvergence of the Taylor tower of the identity functor, for algebras over\\noperads in spectra centered away from the null object. In Goodwillie's homotopy\\nfunctor calculus, being centered away from the null object amounts to doing\\nhomotopy theory and functor calculus in the retractive setting.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.01819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.01819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Functor calculus completions for retractive operadic algebras in spectra
The aim of this paper is to study convergence of Bousfield-Kan completions
with respect to the 1-excisive approximation of the identity functor and exotic
convergence of the Taylor tower of the identity functor, for algebras over
operads in spectra centered away from the null object. In Goodwillie's homotopy
functor calculus, being centered away from the null object amounts to doing
homotopy theory and functor calculus in the retractive setting.