谱中可缩回操作数代数的矢量微积分补全

Matthew B. Carr, John E. Harper
{"title":"谱中可缩回操作数代数的矢量微积分补全","authors":"Matthew B. Carr, John E. Harper","doi":"arxiv-2407.01819","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to study convergence of Bousfield-Kan completions\nwith respect to the 1-excisive approximation of the identity functor and exotic\nconvergence of the Taylor tower of the identity functor, for algebras over\noperads in spectra centered away from the null object. In Goodwillie's homotopy\nfunctor calculus, being centered away from the null object amounts to doing\nhomotopy theory and functor calculus in the retractive setting.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functor calculus completions for retractive operadic algebras in spectra\",\"authors\":\"Matthew B. Carr, John E. Harper\",\"doi\":\"arxiv-2407.01819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to study convergence of Bousfield-Kan completions\\nwith respect to the 1-excisive approximation of the identity functor and exotic\\nconvergence of the Taylor tower of the identity functor, for algebras over\\noperads in spectra centered away from the null object. In Goodwillie's homotopy\\nfunctor calculus, being centered away from the null object amounts to doing\\nhomotopy theory and functor calculus in the retractive setting.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.01819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.01819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是研究布斯菲尔德-坎完备性的收敛性与同调函子的 1- 精近似以及同调函子泰勒塔的奇异收敛性,适用于以远离空对象为中心的谱中的overoperads代数。在古德威利的同调函子微积分中,远离空对象居中相当于在缩回环境中做同调理论和函子微积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functor calculus completions for retractive operadic algebras in spectra
The aim of this paper is to study convergence of Bousfield-Kan completions with respect to the 1-excisive approximation of the identity functor and exotic convergence of the Taylor tower of the identity functor, for algebras over operads in spectra centered away from the null object. In Goodwillie's homotopy functor calculus, being centered away from the null object amounts to doing homotopy theory and functor calculus in the retractive setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信