增强物理和电化学性能的分层聚酰亚胺-共价有机框架碳纤维结构

Piers Coia, Bhagya Dharmasiri, David J. Hayne, Ameya Borkar, Carol Hua, Elmer Austria, Behnam Akhavan, Mia Angela Nuñeza Judicpa, Ken Aldren Sumaya Usman, Joselito Razal, Luke C. Henderson
{"title":"增强物理和电化学性能的分层聚酰亚胺-共价有机框架碳纤维结构","authors":"Piers Coia, Bhagya Dharmasiri, David J. Hayne, Ameya Borkar, Carol Hua, Elmer Austria, Behnam Akhavan, Mia Angela Nuñeza Judicpa, Ken Aldren Sumaya Usman, Joselito Razal, Luke C. Henderson","doi":"10.1002/sstr.202400166","DOIUrl":null,"url":null,"abstract":"The multifunctionality of carbon fiber (CF) is being extensively explored. Herein, polyimide covalent organic frameworks (PI-COFs) are grafted bound to CF to enhance their mechanical and electrochemical properties. Here, a range of COF scaffolds are grafted to the surface of CFs via a two-step functionalization. First, melamine is tethered to the fiber surface to provide an anchoring point for the COFs followed by a “graft from” approach to grow three different sized PI-COFs utilizing three differently sized dianhydride, PMDA to form <b>MA-PMDA</b>, NTCDA to form <b>MA-NTCDA,</b> and PTCDA to form <b>MA-PTCDA</b> COFs. These COFs increase the capacitance of CF by a maximum of 2.9 F g<sup>−1</sup> (480% increase) for the <b>MA-PTCDA</b>, this coincides with an increase in interfacial shear strength by 67.5% and 52% for <b>MA-NTCDA</b> and <b>MA-PTCDA,</b> respectively. This data represents that the first-time CF has been modified with PI-COFs and allows access to COF properties including their porosity and CO<sub>2</sub> capture ability while being attached to a substrate. This may lead to additional high-value recyclability and second-life applications for CFs.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Polyimide-Covalent Organic Frameworks Carbon Fiber Structures Enhancing Physical and Electrochemical Properties\",\"authors\":\"Piers Coia, Bhagya Dharmasiri, David J. Hayne, Ameya Borkar, Carol Hua, Elmer Austria, Behnam Akhavan, Mia Angela Nuñeza Judicpa, Ken Aldren Sumaya Usman, Joselito Razal, Luke C. Henderson\",\"doi\":\"10.1002/sstr.202400166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multifunctionality of carbon fiber (CF) is being extensively explored. Herein, polyimide covalent organic frameworks (PI-COFs) are grafted bound to CF to enhance their mechanical and electrochemical properties. Here, a range of COF scaffolds are grafted to the surface of CFs via a two-step functionalization. First, melamine is tethered to the fiber surface to provide an anchoring point for the COFs followed by a “graft from” approach to grow three different sized PI-COFs utilizing three differently sized dianhydride, PMDA to form <b>MA-PMDA</b>, NTCDA to form <b>MA-NTCDA,</b> and PTCDA to form <b>MA-PTCDA</b> COFs. These COFs increase the capacitance of CF by a maximum of 2.9 F g<sup>−1</sup> (480% increase) for the <b>MA-PTCDA</b>, this coincides with an increase in interfacial shear strength by 67.5% and 52% for <b>MA-NTCDA</b> and <b>MA-PTCDA,</b> respectively. This data represents that the first-time CF has been modified with PI-COFs and allows access to COF properties including their porosity and CO<sub>2</sub> capture ability while being attached to a substrate. This may lead to additional high-value recyclability and second-life applications for CFs.\",\"PeriodicalId\":21841,\"journal\":{\"name\":\"Small Structures\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sstr.202400166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人们正在广泛探索碳纤维(CF)的多功能性。在这里,聚酰亚胺共价有机框架(PI-COF)被接枝到碳纤维上,以增强其机械和电化学性能。在这里,一系列 COF 支架通过两步功能化接枝到 CF 表面。首先,将三聚氰胺拴在纤维表面,为 COF 提供一个锚定点,然后采用 "接枝 "方法,利用三种不同大小的二酸酐(PMDA 形成 MA-PMDA,NTCDA 形成 MA-NTCDA,PTCDA 形成 MA-PTCDA COF)生长出三种不同大小的 PI-COF。这些 COFs 使 MA-PTCDA 的 CF 电容最大增加了 2.9 F g-1(增加了 480%),同时 MA-NTCDA 和 MA-PTCDA 的界面剪切强度也分别增加了 67.5% 和 52%。这些数据表明,PI-COF 首次对 CF 进行了改性,使 COF 在附着于基底的同时,还具有多孔性和二氧化碳捕获能力等特性。这可能会为 CF 带来更多高价值的可回收性和二次生命应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hierarchical Polyimide-Covalent Organic Frameworks Carbon Fiber Structures Enhancing Physical and Electrochemical Properties

Hierarchical Polyimide-Covalent Organic Frameworks Carbon Fiber Structures Enhancing Physical and Electrochemical Properties
The multifunctionality of carbon fiber (CF) is being extensively explored. Herein, polyimide covalent organic frameworks (PI-COFs) are grafted bound to CF to enhance their mechanical and electrochemical properties. Here, a range of COF scaffolds are grafted to the surface of CFs via a two-step functionalization. First, melamine is tethered to the fiber surface to provide an anchoring point for the COFs followed by a “graft from” approach to grow three different sized PI-COFs utilizing three differently sized dianhydride, PMDA to form MA-PMDA, NTCDA to form MA-NTCDA, and PTCDA to form MA-PTCDA COFs. These COFs increase the capacitance of CF by a maximum of 2.9 F g−1 (480% increase) for the MA-PTCDA, this coincides with an increase in interfacial shear strength by 67.5% and 52% for MA-NTCDA and MA-PTCDA, respectively. This data represents that the first-time CF has been modified with PI-COFs and allows access to COF properties including their porosity and CO2 capture ability while being attached to a substrate. This may lead to additional high-value recyclability and second-life applications for CFs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信