Rohit Jasrotia, Anand Sharma, Jahangeer Ahmed, Ritesh Verma, Saad M. Alshehri, Natrayan Lakshmaiya, Mika Sillanpää, Rajinder Kumar and Virat Khanna
{"title":"镧取代镁锌铁氧体纳米结构:阳离子分布、结构、形态、光学、磁学、介电和电磁特性的综合研究","authors":"Rohit Jasrotia, Anand Sharma, Jahangeer Ahmed, Ritesh Verma, Saad M. Alshehri, Natrayan Lakshmaiya, Mika Sillanpää, Rajinder Kumar and Virat Khanna","doi":"10.1149/2162-8777/ad5a3c","DOIUrl":null,"url":null,"abstract":"The sol-gel auto-combustion (SC) procedure was utilised to fabricate lanthanum-doped Mg-Zn nanostructures with the chemical composition, Mg0.6Zn0.4LaxFe2-xO4, (x = 0, 0.05, 0.10). X-ray diffraction showed nanocrystalline and single-phase of Mg-Zn nanostructures. The morphological traits showed formation of irregular and aggregated grains. Fourier transform infrared spectroscopy detected the formation of two characteristic band positions that fall within the range of 400 to 600 cm−1 and may occur because of stretching vibration within metal-oxygen (M-O) cations located at interstitial positions. From the M-H loops, the excellent values of magnetic factors, such as the saturation magnetization (Ms), rentivity (Mr), and coercivity (Hc) ranging from 35.30 to 44.79 emu g−1, 1.40 to 3.75 emu g−1, and 11.56 to 41.42 Oe were obtained. The loss tangent (tan δ) was observed to be miniscule for all of the samples due to which they can be useful for electronic applications. However, the initial values of the real permeability ( ) was high and it decreases until 4 GHz, after which it acquires a constant value for rest of frequency range. However, observed low values of the magnetic loss tangent (tan δμ) were due to the large grain size and the high densification of the samples.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":"73 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lanthanum Substituted Mg-Zn Ferrite Nanostructures: A Comprehensive Study of Cation Distribution, Structural, Morphological, Optical, Magnetic, Dielectric, and Electromagnetic Traits\",\"authors\":\"Rohit Jasrotia, Anand Sharma, Jahangeer Ahmed, Ritesh Verma, Saad M. Alshehri, Natrayan Lakshmaiya, Mika Sillanpää, Rajinder Kumar and Virat Khanna\",\"doi\":\"10.1149/2162-8777/ad5a3c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sol-gel auto-combustion (SC) procedure was utilised to fabricate lanthanum-doped Mg-Zn nanostructures with the chemical composition, Mg0.6Zn0.4LaxFe2-xO4, (x = 0, 0.05, 0.10). X-ray diffraction showed nanocrystalline and single-phase of Mg-Zn nanostructures. The morphological traits showed formation of irregular and aggregated grains. Fourier transform infrared spectroscopy detected the formation of two characteristic band positions that fall within the range of 400 to 600 cm−1 and may occur because of stretching vibration within metal-oxygen (M-O) cations located at interstitial positions. From the M-H loops, the excellent values of magnetic factors, such as the saturation magnetization (Ms), rentivity (Mr), and coercivity (Hc) ranging from 35.30 to 44.79 emu g−1, 1.40 to 3.75 emu g−1, and 11.56 to 41.42 Oe were obtained. The loss tangent (tan δ) was observed to be miniscule for all of the samples due to which they can be useful for electronic applications. However, the initial values of the real permeability ( ) was high and it decreases until 4 GHz, after which it acquires a constant value for rest of frequency range. However, observed low values of the magnetic loss tangent (tan δμ) were due to the large grain size and the high densification of the samples.\",\"PeriodicalId\":11496,\"journal\":{\"name\":\"ECS Journal of Solid State Science and Technology\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Journal of Solid State Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1149/2162-8777/ad5a3c\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad5a3c","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Lanthanum Substituted Mg-Zn Ferrite Nanostructures: A Comprehensive Study of Cation Distribution, Structural, Morphological, Optical, Magnetic, Dielectric, and Electromagnetic Traits
The sol-gel auto-combustion (SC) procedure was utilised to fabricate lanthanum-doped Mg-Zn nanostructures with the chemical composition, Mg0.6Zn0.4LaxFe2-xO4, (x = 0, 0.05, 0.10). X-ray diffraction showed nanocrystalline and single-phase of Mg-Zn nanostructures. The morphological traits showed formation of irregular and aggregated grains. Fourier transform infrared spectroscopy detected the formation of two characteristic band positions that fall within the range of 400 to 600 cm−1 and may occur because of stretching vibration within metal-oxygen (M-O) cations located at interstitial positions. From the M-H loops, the excellent values of magnetic factors, such as the saturation magnetization (Ms), rentivity (Mr), and coercivity (Hc) ranging from 35.30 to 44.79 emu g−1, 1.40 to 3.75 emu g−1, and 11.56 to 41.42 Oe were obtained. The loss tangent (tan δ) was observed to be miniscule for all of the samples due to which they can be useful for electronic applications. However, the initial values of the real permeability ( ) was high and it decreases until 4 GHz, after which it acquires a constant value for rest of frequency range. However, observed low values of the magnetic loss tangent (tan δμ) were due to the large grain size and the high densification of the samples.
期刊介绍:
The ECS Journal of Solid State Science and Technology (JSS) was launched in 2012, and publishes outstanding research covering fundamental and applied areas of solid state science and technology, including experimental and theoretical aspects of the chemistry and physics of materials and devices.
JSS has five topical interest areas:
carbon nanostructures and devices
dielectric science and materials
electronic materials and processing
electronic and photonic devices and systems
luminescence and display materials, devices and processing.