Huiting Xu , Meng Li , Peng Guo , Wenyue Yang , Chunli Li , Honghai Wang , Wenchao Peng , Liu Jiapeng
{"title":"双碳层基质协同改善了氧化锰的锌离子储存性能","authors":"Huiting Xu , Meng Li , Peng Guo , Wenyue Yang , Chunli Li , Honghai Wang , Wenchao Peng , Liu Jiapeng","doi":"10.1016/j.carbon.2024.119403","DOIUrl":null,"url":null,"abstract":"<div><p>Aqueous zinc-ion batteries (AZIBs) have become a hot topic in study owing to their abundance of zinc resources, environmental friendliness, high capacity, and low cost. Nevertheless, the majority of cathode materials utilized in AZIBs frequently exhibit suboptimal electrical conductivity and structural instability, which restrict their application in energy storage. Here, a carbon-coated manganese oxide anchored on carbon skeleton (MnO–C@C) hybrid was synthesized using a simple and scalable method. The electrical conductivity of MnO can be enhanced by the double carbon layer. The presence of carbon skeleton effectively inhibits the agglomeration phenomenon of MnO and exposes more active sites. Meanwhile, the interaction force between the coated carbon and MnO effectively increases the structural stability of MnO. Taking advantage of the synergistic effect, the MnO–C@C hybrid shows an exceptional specific capacity of 409 mAh g<sup>−1</sup> at 50 mA g<sup>−1</sup> and outstanding cycling stability of 1000 cycles at 2000 mA g<sup>−1</sup> (low decay rate of 0.0058 % per cycle). Besides, the reaction mechanisms are investigated via various characterizations. This work presents an inspired solution for developing manganese-based cathode materials in AZIBs.</p></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double carbon layer matrix synergistically improved the zinc-ion storage performance of manganese oxide\",\"authors\":\"Huiting Xu , Meng Li , Peng Guo , Wenyue Yang , Chunli Li , Honghai Wang , Wenchao Peng , Liu Jiapeng\",\"doi\":\"10.1016/j.carbon.2024.119403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aqueous zinc-ion batteries (AZIBs) have become a hot topic in study owing to their abundance of zinc resources, environmental friendliness, high capacity, and low cost. Nevertheless, the majority of cathode materials utilized in AZIBs frequently exhibit suboptimal electrical conductivity and structural instability, which restrict their application in energy storage. Here, a carbon-coated manganese oxide anchored on carbon skeleton (MnO–C@C) hybrid was synthesized using a simple and scalable method. The electrical conductivity of MnO can be enhanced by the double carbon layer. The presence of carbon skeleton effectively inhibits the agglomeration phenomenon of MnO and exposes more active sites. Meanwhile, the interaction force between the coated carbon and MnO effectively increases the structural stability of MnO. Taking advantage of the synergistic effect, the MnO–C@C hybrid shows an exceptional specific capacity of 409 mAh g<sup>−1</sup> at 50 mA g<sup>−1</sup> and outstanding cycling stability of 1000 cycles at 2000 mA g<sup>−1</sup> (low decay rate of 0.0058 % per cycle). Besides, the reaction mechanisms are investigated via various characterizations. This work presents an inspired solution for developing manganese-based cathode materials in AZIBs.</p></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622324006225\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324006225","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
锌离子水电池(AZIBs)具有锌资源丰富、环境友好、容量大、成本低等优点,已成为研究的热点。然而,大多数用于 AZIB 的阴极材料经常表现出导电性不理想和结构不稳定的问题,这限制了它们在储能领域的应用。在此,我们采用一种简单且可扩展的方法合成了一种锚定在碳骨架上的碳包覆氧化锰(MnO-C@C)混合材料。双碳层可以增强氧化锰的导电性。碳骨架的存在有效抑制了氧化锰的团聚现象,并暴露出更多的活性位点。同时,涂覆碳与氧化锰之间的相互作用力有效提高了氧化锰的结构稳定性。利用这种协同效应,MnO-C@C 混合电池在 50 mA g-1 电流条件下的比容量达到了 409 mAh g-1,在 2000 mA g-1 电流条件下的循环稳定性达到了 1000 次(每循环衰减率低至 0.0058%)。此外,还通过各种特性分析研究了反应机制。这项研究为开发 AZIB 中的锰基阴极材料提供了一种灵感解决方案。
Double carbon layer matrix synergistically improved the zinc-ion storage performance of manganese oxide
Aqueous zinc-ion batteries (AZIBs) have become a hot topic in study owing to their abundance of zinc resources, environmental friendliness, high capacity, and low cost. Nevertheless, the majority of cathode materials utilized in AZIBs frequently exhibit suboptimal electrical conductivity and structural instability, which restrict their application in energy storage. Here, a carbon-coated manganese oxide anchored on carbon skeleton (MnO–C@C) hybrid was synthesized using a simple and scalable method. The electrical conductivity of MnO can be enhanced by the double carbon layer. The presence of carbon skeleton effectively inhibits the agglomeration phenomenon of MnO and exposes more active sites. Meanwhile, the interaction force between the coated carbon and MnO effectively increases the structural stability of MnO. Taking advantage of the synergistic effect, the MnO–C@C hybrid shows an exceptional specific capacity of 409 mAh g−1 at 50 mA g−1 and outstanding cycling stability of 1000 cycles at 2000 mA g−1 (low decay rate of 0.0058 % per cycle). Besides, the reaction mechanisms are investigated via various characterizations. This work presents an inspired solution for developing manganese-based cathode materials in AZIBs.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.