具有异质皮芯结构的碳纳米纤维气凝胶微球可吸收宽带电磁波

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Gaofeng Shao , Liqun Guo , Rupan Xu , Yifan Wu , Xiaogu Huang
{"title":"具有异质皮芯结构的碳纳米纤维气凝胶微球可吸收宽带电磁波","authors":"Gaofeng Shao ,&nbsp;Liqun Guo ,&nbsp;Rupan Xu ,&nbsp;Yifan Wu ,&nbsp;Xiaogu Huang","doi":"10.1016/j.carbon.2024.119416","DOIUrl":null,"url":null,"abstract":"<div><p>The advancement in the miniaturization of carbon aerogels into micro-sized spheres represents a significant development in the creation of ultralight, broadband microwave absorbers. Notwithstanding this innovation, there is still a considerable challenge in optimizing microwave absorption (MA) performance through heterointerface engineering within aerogel microspheres. Herein, we have developed skin-core heterogeneous aerogel microspheres by the in situ generation of ZIF-67 nanocrystals on the wet-spun aramid nanofiber (ANF) aerogel microspheres, followed by a high-temperature carbonization process. The resulting Co@C nanoparticle-enshrouded ANF-derived carbon nanofiber aerogel microspheres (Co@C/CNFAMs) demonstrate an exceptional equilibrium between impedance matching and multi-faceted attenuation. Remarkably, the Co@C/CNFAM2 sample attains a maximum effective absorption bandwidth of 8.72 GHz, while maintaining an ultralow filler proportion of 1.5wt%. Moreover, the Co@C/CNFAM3 sample achieves a minimum reflection loss of − 72.34 dB with a filling ratio of 1.2 wt%. Our findings offer a refined approach to the intricate engineering of heterostructures, along with the strategic macrostructural design, paving the way for the development of aerogel-based microwave absorbers that represent the next step in material science innovation.</p></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon Nanofiber Aerogel Microspheres with Heterogeneous Skin-Core Structure for Broadband Electromagnetic Wave Absorption\",\"authors\":\"Gaofeng Shao ,&nbsp;Liqun Guo ,&nbsp;Rupan Xu ,&nbsp;Yifan Wu ,&nbsp;Xiaogu Huang\",\"doi\":\"10.1016/j.carbon.2024.119416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The advancement in the miniaturization of carbon aerogels into micro-sized spheres represents a significant development in the creation of ultralight, broadband microwave absorbers. Notwithstanding this innovation, there is still a considerable challenge in optimizing microwave absorption (MA) performance through heterointerface engineering within aerogel microspheres. Herein, we have developed skin-core heterogeneous aerogel microspheres by the in situ generation of ZIF-67 nanocrystals on the wet-spun aramid nanofiber (ANF) aerogel microspheres, followed by a high-temperature carbonization process. The resulting Co@C nanoparticle-enshrouded ANF-derived carbon nanofiber aerogel microspheres (Co@C/CNFAMs) demonstrate an exceptional equilibrium between impedance matching and multi-faceted attenuation. Remarkably, the Co@C/CNFAM2 sample attains a maximum effective absorption bandwidth of 8.72 GHz, while maintaining an ultralow filler proportion of 1.5wt%. Moreover, the Co@C/CNFAM3 sample achieves a minimum reflection loss of − 72.34 dB with a filling ratio of 1.2 wt%. Our findings offer a refined approach to the intricate engineering of heterostructures, along with the strategic macrostructural design, paving the way for the development of aerogel-based microwave absorbers that represent the next step in material science innovation.</p></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622324006353\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324006353","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

将碳气凝胶微型化为微小球体的技术进步,是制造超轻、宽带微波吸收器的重大发展。尽管有了这一创新,但要通过气凝胶微球内的异质表面工程来优化微波吸收(MA)性能,仍然存在相当大的挑战。在此,我们通过在湿法纺制的芳纶纳米纤维(ANF)气凝胶微球上原位生成 ZIF-67 纳米晶体,然后进行高温碳化工艺,开发出了皮核异质气凝胶微球。由此产生的 Co@C 纳米粒子包覆 ANF 衍生的碳纳米纤维气凝胶微球(Co@C/CNFAMs)在阻抗匹配和多方面衰减之间实现了出色的平衡。值得注意的是,Co@C/CNFAM2 样品在保持 1.5wt% 超低填充比例的同时,达到了 8.72 GHz 的最大有效吸收带宽。此外,Co@C/CNFAM3 样品在填充率为 1.2 wt% 的情况下实现了 - 72.34 dB 的最小反射损耗。我们的研究结果为复杂的异质结构工程以及战略性宏观结构设计提供了一种完善的方法,为气凝胶微波吸收器的开发铺平了道路,代表了材料科学创新的下一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Carbon Nanofiber Aerogel Microspheres with Heterogeneous Skin-Core Structure for Broadband Electromagnetic Wave Absorption

Carbon Nanofiber Aerogel Microspheres with Heterogeneous Skin-Core Structure for Broadband Electromagnetic Wave Absorption

Carbon Nanofiber Aerogel Microspheres with Heterogeneous Skin-Core Structure for Broadband Electromagnetic Wave Absorption

The advancement in the miniaturization of carbon aerogels into micro-sized spheres represents a significant development in the creation of ultralight, broadband microwave absorbers. Notwithstanding this innovation, there is still a considerable challenge in optimizing microwave absorption (MA) performance through heterointerface engineering within aerogel microspheres. Herein, we have developed skin-core heterogeneous aerogel microspheres by the in situ generation of ZIF-67 nanocrystals on the wet-spun aramid nanofiber (ANF) aerogel microspheres, followed by a high-temperature carbonization process. The resulting Co@C nanoparticle-enshrouded ANF-derived carbon nanofiber aerogel microspheres (Co@C/CNFAMs) demonstrate an exceptional equilibrium between impedance matching and multi-faceted attenuation. Remarkably, the Co@C/CNFAM2 sample attains a maximum effective absorption bandwidth of 8.72 GHz, while maintaining an ultralow filler proportion of 1.5wt%. Moreover, the Co@C/CNFAM3 sample achieves a minimum reflection loss of − 72.34 dB with a filling ratio of 1.2 wt%. Our findings offer a refined approach to the intricate engineering of heterostructures, along with the strategic macrostructural design, paving the way for the development of aerogel-based microwave absorbers that represent the next step in material science innovation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信