{"title":"半整数权重的广义克罗斯特曼和的魏尔约束","authors":"Nickolas Andersen, Gradin Anderson, Amy Woodall","doi":"10.1515/forum-2023-0367","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>L</jats:italic> be an even lattice of odd rank with discriminant group <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo>/</m:mo> <m:mi>L</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0367_eq_0327.png\"/> <jats:tex-math>{L^{\\prime}/L}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> <m:mo>∈</m:mo> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo>/</m:mo> <m:mi>L</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0367_eq_0384.png\"/> <jats:tex-math>{\\alpha,\\beta\\in L^{\\prime}/L}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove the Weil bound for the Kloosterman sums <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>S</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>m</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:mi>c</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0367_eq_0360.png\"/> <jats:tex-math>{S_{\\alpha,\\beta}(m,n,c)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of half-integral weight for the Weil Representation attached to <jats:italic>L</jats:italic>. We obtain this bound by proving an identity that relates a divisor sum of Kloosterman sums to a sparse exponential sum. This identity generalizes Kohnen’s identity for plus space Kloosterman sums with the theta multiplier system.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"26 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Weil bound for generalized Kloosterman sums of half-integral weight\",\"authors\":\"Nickolas Andersen, Gradin Anderson, Amy Woodall\",\"doi\":\"10.1515/forum-2023-0367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:italic>L</jats:italic> be an even lattice of odd rank with discriminant group <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo>/</m:mo> <m:mi>L</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0367_eq_0327.png\\\"/> <jats:tex-math>{L^{\\\\prime}/L}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> <m:mo>∈</m:mo> <m:mrow> <m:msup> <m:mi>L</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo>/</m:mo> <m:mi>L</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0367_eq_0384.png\\\"/> <jats:tex-math>{\\\\alpha,\\\\beta\\\\in L^{\\\\prime}/L}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove the Weil bound for the Kloosterman sums <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msub> <m:mi>S</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:mrow> </m:msub> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>m</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:mi>c</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0367_eq_0360.png\\\"/> <jats:tex-math>{S_{\\\\alpha,\\\\beta}(m,n,c)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of half-integral weight for the Weil Representation attached to <jats:italic>L</jats:italic>. We obtain this bound by proving an identity that relates a divisor sum of Kloosterman sums to a sparse exponential sum. This identity generalizes Kohnen’s identity for plus space Kloosterman sums with the theta multiplier system.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0367\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0367","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 L 是奇数阶的偶数网格,其判别群为 L ′ / L {L^{prime}/L} ,并让α , β ∈ L ′ / L {\alpha,\beta\in L^{\prime}/L} . 让 α , β ∈ L ′ / L {L^{prime}/L} 。我们通过证明一个将 Kloosterman 和的除数和与稀疏指数和相关联的同一性来得到这个边界。这一特性概括了科南特性(Kohnen's identity for plus space Kloosterman sums with theta multiplier system)。
The Weil bound for generalized Kloosterman sums of half-integral weight
Let L be an even lattice of odd rank with discriminant group L′/L{L^{\prime}/L}, and let α,β∈L′/L{\alpha,\beta\in L^{\prime}/L}. We prove the Weil bound for the Kloosterman sums Sα,β(m,n,c){S_{\alpha,\beta}(m,n,c)} of half-integral weight for the Weil Representation attached to L. We obtain this bound by proving an identity that relates a divisor sum of Kloosterman sums to a sparse exponential sum. This identity generalizes Kohnen’s identity for plus space Kloosterman sums with the theta multiplier system.
期刊介绍:
Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.