Yuchen Yuan, Xiaoyue Feng, Bo Zhang, Pengyi Zhang, Jie Song
{"title":"JAPO:学习连接和下推顺序,实现云原生连接优化","authors":"Yuchen Yuan, Xiaoyue Feng, Bo Zhang, Pengyi Zhang, Jie Song","doi":"10.1007/s11704-024-3937-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce JAPO which learn the join and pushdown order through DRL. The main idea is that the DRL agent learns better decisions based on the experiences by monitoring the rewards and latencies via trying different actions. The results show that our method can generate good plans both on join order and pushdown order. We also show that our method can select the well-performed distributed index placement via experiments. In the future, we plan to deploy JAPO to real systems execution and consider more factors in JAPO, such as different join types.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":"26 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"JAPO: learning join and pushdown order for cloud-native join optimization\",\"authors\":\"Yuchen Yuan, Xiaoyue Feng, Bo Zhang, Pengyi Zhang, Jie Song\",\"doi\":\"10.1007/s11704-024-3937-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we introduce JAPO which learn the join and pushdown order through DRL. The main idea is that the DRL agent learns better decisions based on the experiences by monitoring the rewards and latencies via trying different actions. The results show that our method can generate good plans both on join order and pushdown order. We also show that our method can select the well-performed distributed index placement via experiments. In the future, we plan to deploy JAPO to real systems execution and consider more factors in JAPO, such as different join types.</p>\",\"PeriodicalId\":12640,\"journal\":{\"name\":\"Frontiers of Computer Science\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11704-024-3937-z\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-024-3937-z","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
JAPO: learning join and pushdown order for cloud-native join optimization
In this paper, we introduce JAPO which learn the join and pushdown order through DRL. The main idea is that the DRL agent learns better decisions based on the experiences by monitoring the rewards and latencies via trying different actions. The results show that our method can generate good plans both on join order and pushdown order. We also show that our method can select the well-performed distributed index placement via experiments. In the future, we plan to deploy JAPO to real systems execution and consider more factors in JAPO, such as different join types.
期刊介绍:
Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.