Younes Rafik, Valerian Palanque, Marc Budinger, Valerie Pommier-Budinger, Philippe Olivier
{"title":"通过优化基板改进共振冰保护系统","authors":"Younes Rafik, Valerian Palanque, Marc Budinger, Valerie Pommier-Budinger, Philippe Olivier","doi":"10.1088/1361-665x/ad5126","DOIUrl":null,"url":null,"abstract":"Electro-mechanical de-icing systems are low-energy ice protection solutions based on ice fracture mechanisms. This article focuses on resonant electro-mechanical de-icing systems that actuate modes of flexion, which require low energy compared to extension modes. However, fracture propagation limits are encountered when using such flexural modes, preventing the ice from being completely detached from the substrate. This study demonstrates the feasibility of extending the ice detachment area by optimizing the thickness of the substrate. First, the interest and the limits of flexural resonant modes are discussed. Then the de-icing of a simple metallic beam in free conditions using a flexural mode is improved owing to the parametric optimization of the substrate thickness. The optimization is verified by tests on aluminum prototypes. The optimization results are then extended to a clamped composite plate and then to a NACA profile, showing interest in the approach to fully de-ice structures with modes of flexion, even in the case of complex geometries. With this last example, the study also demonstrates the feasibility of electro-mechanical ice protection systems for carbon fiber reinforced Polymer composite structures.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"30 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving resonant ice protection systems with substrate optimization\",\"authors\":\"Younes Rafik, Valerian Palanque, Marc Budinger, Valerie Pommier-Budinger, Philippe Olivier\",\"doi\":\"10.1088/1361-665x/ad5126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electro-mechanical de-icing systems are low-energy ice protection solutions based on ice fracture mechanisms. This article focuses on resonant electro-mechanical de-icing systems that actuate modes of flexion, which require low energy compared to extension modes. However, fracture propagation limits are encountered when using such flexural modes, preventing the ice from being completely detached from the substrate. This study demonstrates the feasibility of extending the ice detachment area by optimizing the thickness of the substrate. First, the interest and the limits of flexural resonant modes are discussed. Then the de-icing of a simple metallic beam in free conditions using a flexural mode is improved owing to the parametric optimization of the substrate thickness. The optimization is verified by tests on aluminum prototypes. The optimization results are then extended to a clamped composite plate and then to a NACA profile, showing interest in the approach to fully de-ice structures with modes of flexion, even in the case of complex geometries. With this last example, the study also demonstrates the feasibility of electro-mechanical ice protection systems for carbon fiber reinforced Polymer composite structures.\",\"PeriodicalId\":21656,\"journal\":{\"name\":\"Smart Materials and Structures\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-665x/ad5126\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad5126","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Improving resonant ice protection systems with substrate optimization
Electro-mechanical de-icing systems are low-energy ice protection solutions based on ice fracture mechanisms. This article focuses on resonant electro-mechanical de-icing systems that actuate modes of flexion, which require low energy compared to extension modes. However, fracture propagation limits are encountered when using such flexural modes, preventing the ice from being completely detached from the substrate. This study demonstrates the feasibility of extending the ice detachment area by optimizing the thickness of the substrate. First, the interest and the limits of flexural resonant modes are discussed. Then the de-icing of a simple metallic beam in free conditions using a flexural mode is improved owing to the parametric optimization of the substrate thickness. The optimization is verified by tests on aluminum prototypes. The optimization results are then extended to a clamped composite plate and then to a NACA profile, showing interest in the approach to fully de-ice structures with modes of flexion, even in the case of complex geometries. With this last example, the study also demonstrates the feasibility of electro-mechanical ice protection systems for carbon fiber reinforced Polymer composite structures.
期刊介绍:
Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures.
A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.