Juanli Yuan, Jingbiao Liu, Zhixu Chen, Hong Deng, Xueming Liu, Zhang Lin
{"title":"阳离子-氧键活化和 K+/Na+ 协同促进冶炼渣中硅酸盐相解离的机理","authors":"Juanli Yuan, Jingbiao Liu, Zhixu Chen, Hong Deng, Xueming Liu, Zhang Lin","doi":"10.1021/acsestengg.4c00205","DOIUrl":null,"url":null,"abstract":"Silicate phase was identified as the key phase of smelting slag and also the main constraint for its resource utilization. Therefore, unraveling the dissociation mechanism of silicate phase was crucial for enhancing the resource utilization of smelting slag. In this study, the activation of synthesized pure olivine was utilized as a research template to investigate the silicate phase activation mechanism. The optimal conditions for olivine activation were established as olivine:NaOH:KOH = 1:5:0.5 (molar ratio), roasting temperature of 700 °C, and roasting time of 3 h. Response surface methodology (RSM) was employed to verify the correlation of the main influencing factors on the activation effect in the order of mineral alkali molar ratio > temperature > time. The lattice site substitution mechanism and the transformation law of the physical phase of the activation process were elucidated by DFT calculations. The activation mechanism of silicate phase was revealed to involve: 1) OH<sup>–</sup> adsorption on cation sites, leading to the activation of cation–oxygen bonds and the formation of the hydroxyl compounds. 2) K<sup>+</sup>/Na<sup>+</sup> created a synergistic effect to fill the cation vacancies, facilitating the gradual release of cations. This research aims to offer theoretical guidance for smelting slag treatment by providing a deeper understanding of the activation mechanism of silicate-type minerals.","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of Cation–Oxygen Bond Activation and K+/Na+ Synergistic Promotion of Silicate Phase Dissociation in Smelting Slag\",\"authors\":\"Juanli Yuan, Jingbiao Liu, Zhixu Chen, Hong Deng, Xueming Liu, Zhang Lin\",\"doi\":\"10.1021/acsestengg.4c00205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicate phase was identified as the key phase of smelting slag and also the main constraint for its resource utilization. Therefore, unraveling the dissociation mechanism of silicate phase was crucial for enhancing the resource utilization of smelting slag. In this study, the activation of synthesized pure olivine was utilized as a research template to investigate the silicate phase activation mechanism. The optimal conditions for olivine activation were established as olivine:NaOH:KOH = 1:5:0.5 (molar ratio), roasting temperature of 700 °C, and roasting time of 3 h. Response surface methodology (RSM) was employed to verify the correlation of the main influencing factors on the activation effect in the order of mineral alkali molar ratio > temperature > time. The lattice site substitution mechanism and the transformation law of the physical phase of the activation process were elucidated by DFT calculations. The activation mechanism of silicate phase was revealed to involve: 1) OH<sup>–</sup> adsorption on cation sites, leading to the activation of cation–oxygen bonds and the formation of the hydroxyl compounds. 2) K<sup>+</sup>/Na<sup>+</sup> created a synergistic effect to fill the cation vacancies, facilitating the gradual release of cations. This research aims to offer theoretical guidance for smelting slag treatment by providing a deeper understanding of the activation mechanism of silicate-type minerals.\",\"PeriodicalId\":7008,\"journal\":{\"name\":\"ACS ES&T engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsestengg.4c00205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsestengg.4c00205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Mechanism of Cation–Oxygen Bond Activation and K+/Na+ Synergistic Promotion of Silicate Phase Dissociation in Smelting Slag
Silicate phase was identified as the key phase of smelting slag and also the main constraint for its resource utilization. Therefore, unraveling the dissociation mechanism of silicate phase was crucial for enhancing the resource utilization of smelting slag. In this study, the activation of synthesized pure olivine was utilized as a research template to investigate the silicate phase activation mechanism. The optimal conditions for olivine activation were established as olivine:NaOH:KOH = 1:5:0.5 (molar ratio), roasting temperature of 700 °C, and roasting time of 3 h. Response surface methodology (RSM) was employed to verify the correlation of the main influencing factors on the activation effect in the order of mineral alkali molar ratio > temperature > time. The lattice site substitution mechanism and the transformation law of the physical phase of the activation process were elucidated by DFT calculations. The activation mechanism of silicate phase was revealed to involve: 1) OH– adsorption on cation sites, leading to the activation of cation–oxygen bonds and the formation of the hydroxyl compounds. 2) K+/Na+ created a synergistic effect to fill the cation vacancies, facilitating the gradual release of cations. This research aims to offer theoretical guidance for smelting slag treatment by providing a deeper understanding of the activation mechanism of silicate-type minerals.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.