全形射流沿子曲率的最优全形扩展的渐近性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
{"title":"全形射流沿子曲率的最优全形扩展的渐近性","authors":"","doi":"10.1016/j.matpur.2024.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>For a complex submanifold in a complex manifold, we consider the operator which for a given holomorphic jet of a vector bundle along the submanifold associates the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-optimal holomorphic extension of it to the ambient manifold. When the vector bundle is given by big tensor powers of a positive line bundle, we give an asymptotic formula for this extension operator.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S002178242400076X/pdfft?md5=403e748e3c30fd29eb21bce9d4dcd45a&pid=1-s2.0-S002178242400076X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The asymptotics of the optimal holomorphic extensions of holomorphic jets along submanifolds\",\"authors\":\"\",\"doi\":\"10.1016/j.matpur.2024.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a complex submanifold in a complex manifold, we consider the operator which for a given holomorphic jet of a vector bundle along the submanifold associates the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-optimal holomorphic extension of it to the ambient manifold. When the vector bundle is given by big tensor powers of a positive line bundle, we give an asymptotic formula for this extension operator.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S002178242400076X/pdfft?md5=403e748e3c30fd29eb21bce9d4dcd45a&pid=1-s2.0-S002178242400076X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002178242400076X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002178242400076X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

对于复变体中的复次变体,我们考虑这样一个算子:对于沿着该次变体纤维化的矢量的全纯射流,该射流的最优全纯扩展与环境变体相关联。当纤维向量是由正线纤维向量的大张量幂给出时,我们给出了这个扩展算子的渐近公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The asymptotics of the optimal holomorphic extensions of holomorphic jets along submanifolds

For a complex submanifold in a complex manifold, we consider the operator which for a given holomorphic jet of a vector bundle along the submanifold associates the L2-optimal holomorphic extension of it to the ambient manifold. When the vector bundle is given by big tensor powers of a positive line bundle, we give an asymptotic formula for this extension operator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信