绝缘传导问题的梯度估计:非伞形情况

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
{"title":"绝缘传导问题的梯度估计:非伞形情况","authors":"","doi":"10.1016/j.matpur.2024.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>We study the insulated conductivity problem with inclusions embedded in a bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>. The gradient of solutions may blow up as <em>ε</em>, the distance between the inclusions, approaches to 0. We established in a recent paper optimal gradient estimates for a class of inclusions including balls. In this paper, we prove such gradient estimates for general strictly convex inclusions. Unlike the perfect conductivity problem, the estimates depend on the principal curvatures of the inclusions, and we show that these estimates are characterized by the first non-zero eigenvalue of a divergence form elliptic operator on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup></math></span>.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient estimates for the insulated conductivity problem: The non-umbilical case\",\"authors\":\"\",\"doi\":\"10.1016/j.matpur.2024.06.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the insulated conductivity problem with inclusions embedded in a bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>. The gradient of solutions may blow up as <em>ε</em>, the distance between the inclusions, approaches to 0. We established in a recent paper optimal gradient estimates for a class of inclusions including balls. In this paper, we prove such gradient estimates for general strictly convex inclusions. Unlike the perfect conductivity problem, the estimates depend on the principal curvatures of the inclusions, and we show that these estimates are characterized by the first non-zero eigenvalue of a divergence form elliptic operator on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup></math></span>.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是有内含物嵌入有界域中的绝缘传导问题。我们在最近的一篇论文中建立了包括球在内的一类内含物的最优梯度估计。在本文中,我们将证明一般严格凸内含物的梯度估计值。与完全导纳问题不同的是,估计值取决于内含物的主曲率,我们证明了这些估计值的特征是...上发散形式椭圆算子的第一个非零特征值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gradient estimates for the insulated conductivity problem: The non-umbilical case

We study the insulated conductivity problem with inclusions embedded in a bounded domain in Rn, for n3. The gradient of solutions may blow up as ε, the distance between the inclusions, approaches to 0. We established in a recent paper optimal gradient estimates for a class of inclusions including balls. In this paper, we prove such gradient estimates for general strictly convex inclusions. Unlike the perfect conductivity problem, the estimates depend on the principal curvatures of the inclusions, and we show that these estimates are characterized by the first non-zero eigenvalue of a divergence form elliptic operator on Sn2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信