加权伯克霍夫平均数的指数收敛性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zhicheng Tong , Yong Li
{"title":"加权伯克霍夫平均数的指数收敛性","authors":"Zhicheng Tong ,&nbsp;Yong Li","doi":"10.1016/j.matpur.2024.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the polynomial and exponential convergence rates of the weighted Birkhoff averages of irrational rotations on tori. It is shown that these can be achieved for finite and infinite dimensional tori which correspond to the quasiperiodic and almost periodic dynamical systems respectively, under certain balance between the nonresonant condition and the decay rate of the Fourier coefficients. Diophantine rotations with finite and infinite dimensions are provided as examples. For the first time, we prove the universality of exponential convergence and arbitrary polynomial convergence in the quasiperiodic case and almost periodic case under analyticity respectively.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential convergence of the weighted Birkhoff average\",\"authors\":\"Zhicheng Tong ,&nbsp;Yong Li\",\"doi\":\"10.1016/j.matpur.2024.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the polynomial and exponential convergence rates of the weighted Birkhoff averages of irrational rotations on tori. It is shown that these can be achieved for finite and infinite dimensional tori which correspond to the quasiperiodic and almost periodic dynamical systems respectively, under certain balance between the nonresonant condition and the decay rate of the Fourier coefficients. Diophantine rotations with finite and infinite dimensions are provided as examples. For the first time, we prove the universality of exponential convergence and arbitrary polynomial convergence in the quasiperiodic case and almost periodic case under analyticity respectively.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了环面上无理旋转的伯克霍夫加权平均数的多项式收敛率和指数收敛率。结果表明,在非共振条件和傅里叶系数衰减率之间的某种平衡下,对于分别对应于准周期和近周期动力系统的有限维和无限维环面,这些收敛率都可以达到。以有限维和无限维的二阶旋转为例。在解析性条件下,我们首次证明了准周期和近周期情况下指数收敛和任意多项式收敛的普遍性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential convergence of the weighted Birkhoff average

In this paper, we consider the polynomial and exponential convergence rates of the weighted Birkhoff averages of irrational rotations on tori. It is shown that these can be achieved for finite and infinite dimensional tori which correspond to the quasiperiodic and almost periodic dynamical systems respectively, under certain balance between the nonresonant condition and the decay rate of the Fourier coefficients. Diophantine rotations with finite and infinite dimensions are provided as examples. For the first time, we prove the universality of exponential convergence and arbitrary polynomial convergence in the quasiperiodic case and almost periodic case under analyticity respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信