{"title":"关于分量递增规范的 N-Cheeger 问题","authors":"","doi":"10.1016/j.matpur.2024.06.008","DOIUrl":null,"url":null,"abstract":"<div><p>We study Cheeger and <em>p</em>-eigenvalue partition problems depending on a given evaluation function Φ for <span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>. We prove existence and regularity of minima, relations between the problems, convergence, and stability with respect to <em>p</em> and to Φ.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"189 ","pages":"Article 103593"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the N-Cheeger problem for component-wise increasing norms\",\"authors\":\"\",\"doi\":\"10.1016/j.matpur.2024.06.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study Cheeger and <em>p</em>-eigenvalue partition problems depending on a given evaluation function Φ for <span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>. We prove existence and regularity of minima, relations between the problems, convergence, and stability with respect to <em>p</em> and to Φ.</p></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"189 \",\"pages\":\"Article 103593\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782424000837\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000837","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the N-Cheeger problem for component-wise increasing norms
We study Cheeger and p-eigenvalue partition problems depending on a given evaluation function Φ for . We prove existence and regularity of minima, relations between the problems, convergence, and stability with respect to p and to Φ.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.