Stephen Sunday Emmanuel, Ademidun Adeola Adesibikan
{"title":"利用纳米结构材料收集表面(界面)能量,对有害染料污染物进行摩擦催化降解:综述","authors":"Stephen Sunday Emmanuel, Ademidun Adeola Adesibikan","doi":"10.1002/jccs.202400157","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Introduction</h3>\n \n <p>Tribocatalysis, an emerging cutting-edge technique that uses frictional mechanical energy to activate the catalytic operation of a reaction or material including nanomaterials has garnered the interest of the research community in recent times.</p>\n </section>\n \n <section>\n \n <h3> Aim</h3>\n \n <p>This study aimed to critically review original research works directed toward tribocatalytic degradation of various hazardous dye pollutants. Notably, in this review, various nanomaterials and their composites with outstanding tailored degradation profiles are explored for their tribocatalytic degradation efficiency for various dye pollutants. In addition, the effect of various operating factors that are of importance to engineers, industries, and investors for optimization purposes was pragmatically discussed. Also, the effect of electron trapping and radical scavengers alongside the mechanism of tribocatalytic degradation was empirically analyzed.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>From this work, it was found that the maximum tribocatalytic degradation efficiency was >80% in most cases at an optimum temperature of 20–40°C, time taken of 0.5-48 hours, and stirring speed of 500-1000rmp. It was discovered that magnetic stirring enhances the production of •OH, O<sub>2</sub>•, and h+ by the nanomaterials that are mechanistically responsible for the degradation of the dye pollutants. Also, it was revealed that expended tribocatalyst can be eluted mostly using H<sub>2O</sub> and can be reused up to 3–10 times while still sustaining degradation efficiency of >80% in most cases and this suggests the industrial scalability and eco-friendliness potential of this approach.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>In the end, challenges and research gaps that can pave the way for method improvement and also serve as future research hotspots for researchers were presented.</p>\n </section>\n </div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harvesting surface (interfacial) energy for tribocatalytic degradation of hazardous dye pollutants using nanostructured materials: A review\",\"authors\":\"Stephen Sunday Emmanuel, Ademidun Adeola Adesibikan\",\"doi\":\"10.1002/jccs.202400157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Introduction</h3>\\n \\n <p>Tribocatalysis, an emerging cutting-edge technique that uses frictional mechanical energy to activate the catalytic operation of a reaction or material including nanomaterials has garnered the interest of the research community in recent times.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>This study aimed to critically review original research works directed toward tribocatalytic degradation of various hazardous dye pollutants. Notably, in this review, various nanomaterials and their composites with outstanding tailored degradation profiles are explored for their tribocatalytic degradation efficiency for various dye pollutants. In addition, the effect of various operating factors that are of importance to engineers, industries, and investors for optimization purposes was pragmatically discussed. Also, the effect of electron trapping and radical scavengers alongside the mechanism of tribocatalytic degradation was empirically analyzed.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>From this work, it was found that the maximum tribocatalytic degradation efficiency was >80% in most cases at an optimum temperature of 20–40°C, time taken of 0.5-48 hours, and stirring speed of 500-1000rmp. It was discovered that magnetic stirring enhances the production of •OH, O<sub>2</sub>•, and h+ by the nanomaterials that are mechanistically responsible for the degradation of the dye pollutants. Also, it was revealed that expended tribocatalyst can be eluted mostly using H<sub>2O</sub> and can be reused up to 3–10 times while still sustaining degradation efficiency of >80% in most cases and this suggests the industrial scalability and eco-friendliness potential of this approach.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>In the end, challenges and research gaps that can pave the way for method improvement and also serve as future research hotspots for researchers were presented.</p>\\n </section>\\n </div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400157\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400157","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Harvesting surface (interfacial) energy for tribocatalytic degradation of hazardous dye pollutants using nanostructured materials: A review
Introduction
Tribocatalysis, an emerging cutting-edge technique that uses frictional mechanical energy to activate the catalytic operation of a reaction or material including nanomaterials has garnered the interest of the research community in recent times.
Aim
This study aimed to critically review original research works directed toward tribocatalytic degradation of various hazardous dye pollutants. Notably, in this review, various nanomaterials and their composites with outstanding tailored degradation profiles are explored for their tribocatalytic degradation efficiency for various dye pollutants. In addition, the effect of various operating factors that are of importance to engineers, industries, and investors for optimization purposes was pragmatically discussed. Also, the effect of electron trapping and radical scavengers alongside the mechanism of tribocatalytic degradation was empirically analyzed.
Results
From this work, it was found that the maximum tribocatalytic degradation efficiency was >80% in most cases at an optimum temperature of 20–40°C, time taken of 0.5-48 hours, and stirring speed of 500-1000rmp. It was discovered that magnetic stirring enhances the production of •OH, O2•, and h+ by the nanomaterials that are mechanistically responsible for the degradation of the dye pollutants. Also, it was revealed that expended tribocatalyst can be eluted mostly using H2O and can be reused up to 3–10 times while still sustaining degradation efficiency of >80% in most cases and this suggests the industrial scalability and eco-friendliness potential of this approach.
Conclusion
In the end, challenges and research gaps that can pave the way for method improvement and also serve as future research hotspots for researchers were presented.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.