自由流与多孔介质叠加两相流体的二阶解耦线性能量守恒 gPAV 数值方案

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yali Gao, Daozhi Han
{"title":"自由流与多孔介质叠加两相流体的二阶解耦线性能量守恒 gPAV 数值方案","authors":"Yali Gao, Daozhi Han","doi":"10.1007/s10915-024-02576-4","DOIUrl":null,"url":null,"abstract":"<p>We propose second-order numerical methods based on the generalized positive auxiliary variable (gPAV) framework for solving the Cahn–Hilliard–Navier–Stokes–Darcy model in superposed free flow and porous media. In the gPAV-reformulated system, we introduce an auxiliary variable according to the modified energy law and take account into the interface conditions between the two subdomains. By implicit-explicit temporal discretization, we develop fully decoupled linear gPAV-CNLF and gPAV-BDF2 numerical methods effected with the Galerkin finite element method. The fully discrete schemes satisfy a modified energy law irrespective of time step size. Plentiful numerical experiments are performed to validate the methods and demonstrate the robustness. The application in filtration systems, the influence of viscous instability, general permeability, curve interface, and different densities are discussed in details to further illustrate the compatibility and applicability of our developed gPAV numerical methods.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Second-Order Decoupled Linear Energy-Law Preserving gPAV Numerical Schemes for Two-Phase Flows in Superposed Free Flow and Porous Media\",\"authors\":\"Yali Gao, Daozhi Han\",\"doi\":\"10.1007/s10915-024-02576-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose second-order numerical methods based on the generalized positive auxiliary variable (gPAV) framework for solving the Cahn–Hilliard–Navier–Stokes–Darcy model in superposed free flow and porous media. In the gPAV-reformulated system, we introduce an auxiliary variable according to the modified energy law and take account into the interface conditions between the two subdomains. By implicit-explicit temporal discretization, we develop fully decoupled linear gPAV-CNLF and gPAV-BDF2 numerical methods effected with the Galerkin finite element method. The fully discrete schemes satisfy a modified energy law irrespective of time step size. Plentiful numerical experiments are performed to validate the methods and demonstrate the robustness. The application in filtration systems, the influence of viscous instability, general permeability, curve interface, and different densities are discussed in details to further illustrate the compatibility and applicability of our developed gPAV numerical methods.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02576-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02576-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了基于广义正辅助变量(gPAV)框架的二阶数值方法,用于求解叠加自由流体和多孔介质中的 Cahn-Hilliard-Navier-Stokes-Darcy 模型。在 gPAV 重构系统中,我们根据修正的能量定律引入了一个辅助变量,并考虑了两个子域之间的界面条件。通过隐式-显式时间离散化,我们用 Galerkin 有限元方法开发了完全解耦的线性 gPAV-CNLF 和 gPAV-BDF2 数值方法。无论时间步长大小如何,完全离散方案都能满足修正的能量定律。为了验证这些方法并证明其鲁棒性,进行了大量的数值实验。详细讨论了在过滤系统中的应用、粘性不稳定性、一般渗透性、曲线界面和不同密度的影响,以进一步说明我们开发的 gPAV 数值方法的兼容性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Second-Order Decoupled Linear Energy-Law Preserving gPAV Numerical Schemes for Two-Phase Flows in Superposed Free Flow and Porous Media

Second-Order Decoupled Linear Energy-Law Preserving gPAV Numerical Schemes for Two-Phase Flows in Superposed Free Flow and Porous Media

We propose second-order numerical methods based on the generalized positive auxiliary variable (gPAV) framework for solving the Cahn–Hilliard–Navier–Stokes–Darcy model in superposed free flow and porous media. In the gPAV-reformulated system, we introduce an auxiliary variable according to the modified energy law and take account into the interface conditions between the two subdomains. By implicit-explicit temporal discretization, we develop fully decoupled linear gPAV-CNLF and gPAV-BDF2 numerical methods effected with the Galerkin finite element method. The fully discrete schemes satisfy a modified energy law irrespective of time step size. Plentiful numerical experiments are performed to validate the methods and demonstrate the robustness. The application in filtration systems, the influence of viscous instability, general permeability, curve interface, and different densities are discussed in details to further illustrate the compatibility and applicability of our developed gPAV numerical methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信