使用 Dafermos 的熵率标准稳定非连续 Galerkin 方法:II-守恒定律系统和熵不等式预测器

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Simon-Christian Klein
{"title":"使用 Dafermos 的熵率标准稳定非连续 Galerkin 方法:II-守恒定律系统和熵不等式预测器","authors":"Simon-Christian Klein","doi":"10.1007/s10915-024-02595-1","DOIUrl":null,"url":null,"abstract":"<p>A novel approach for the stabilization of the Discontinuous Galerkin method based on the Dafermos entropy rate crition is presented. First, estimates for the maximal possible entropy dissipation rate of a weak solution are derived. Second, families of conservative Hilbert–Schmidt operators are identified to dissipate entropy. Steering these operators using the bounds on the entropy dissipation results in high-order accurate shock-capturing DG schemes for the one-dimensional Euler equations, satisfying the entropy rate criterion and an entropy inequality. Other testcases include the one-dimensional Buckley–Leverett equation.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"183 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilizing Discontinuous Galerkin Methods Using Dafermos’ Entropy Rate Criterion: II—Systems of Conservation Laws and Entropy Inequality Predictors\",\"authors\":\"Simon-Christian Klein\",\"doi\":\"10.1007/s10915-024-02595-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A novel approach for the stabilization of the Discontinuous Galerkin method based on the Dafermos entropy rate crition is presented. First, estimates for the maximal possible entropy dissipation rate of a weak solution are derived. Second, families of conservative Hilbert–Schmidt operators are identified to dissipate entropy. Steering these operators using the bounds on the entropy dissipation results in high-order accurate shock-capturing DG schemes for the one-dimensional Euler equations, satisfying the entropy rate criterion and an entropy inequality. Other testcases include the one-dimensional Buckley–Leverett equation.</p>\",\"PeriodicalId\":50055,\"journal\":{\"name\":\"Journal of Scientific Computing\",\"volume\":\"183 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02595-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02595-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于 Dafermos 熵率判据的非连续伽勒金方法稳定化的新方法。首先,推导出弱解的最大可能熵耗散率估计值。其次,确定了能耗散熵的保守希尔伯特-施密特算子系列。利用熵耗散的边界来引导这些算子,结果是一维欧拉方程的高阶精确冲击捕捉 DG 方案,满足熵率准则和熵不等式。其他测试案例包括一维巴克利-勒维特方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stabilizing Discontinuous Galerkin Methods Using Dafermos’ Entropy Rate Criterion: II—Systems of Conservation Laws and Entropy Inequality Predictors

Stabilizing Discontinuous Galerkin Methods Using Dafermos’ Entropy Rate Criterion: II—Systems of Conservation Laws and Entropy Inequality Predictors

A novel approach for the stabilization of the Discontinuous Galerkin method based on the Dafermos entropy rate crition is presented. First, estimates for the maximal possible entropy dissipation rate of a weak solution are derived. Second, families of conservative Hilbert–Schmidt operators are identified to dissipate entropy. Steering these operators using the bounds on the entropy dissipation results in high-order accurate shock-capturing DG schemes for the one-dimensional Euler equations, satisfying the entropy rate criterion and an entropy inequality. Other testcases include the one-dimensional Buckley–Leverett equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Scientific Computing
Journal of Scientific Computing 数学-应用数学
CiteScore
4.00
自引率
12.00%
发文量
302
审稿时长
4-8 weeks
期刊介绍: Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering. The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信