反应扩散问题 LDG 方法的最优平衡正态误差估计 I:一维情况

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yao Cheng, Xuesong Wang, Martin Stynes
{"title":"反应扩散问题 LDG 方法的最优平衡正态误差估计 I:一维情况","authors":"Yao Cheng, Xuesong Wang, Martin Stynes","doi":"10.1007/s10915-024-02602-5","DOIUrl":null,"url":null,"abstract":"<p>A singularly perturbed reaction–diffusion problem in 1D is solved numerically by a local discontinuous Galerkin (LDG) finite element method. For this type of problem the standard energy norm is too weak to capture the contribution of the boundary layer component of the true solution, so balanced norms have been used by many authors to give more satisfactory error bounds for solutions computed using various types of finite element method. But for the LDG method, up to now no optimal-order balanced-norm error estimate has been derived. In this paper, we consider an LDG method with central numerical flux on a Shishkin mesh. Using the superconvergence property of the local <span>\\(L^2\\)</span> projector and some local coupled projections around the two transition points of the mesh, we prove an optimal-order balanced-norm error estimate for the computed solution; that is, when piecewise polynomials of degree <i>k</i> are used on a Shishkin mesh with <i>N</i> mesh intervals, in the balanced norm we establish <span>\\(O((N^{-1}\\ln N)^{k+1})\\)</span> convergence when <i>k</i> is even and <span>\\(O((N^{-1}\\ln N)^{k})\\)</span> when <i>k</i> is odd. Numerical experiments confirm the sharpness of these error bounds.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Balanced-Norm Error Estimate of the LDG Method for Reaction–Diffusion Problems I: The One-Dimensional Case\",\"authors\":\"Yao Cheng, Xuesong Wang, Martin Stynes\",\"doi\":\"10.1007/s10915-024-02602-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A singularly perturbed reaction–diffusion problem in 1D is solved numerically by a local discontinuous Galerkin (LDG) finite element method. For this type of problem the standard energy norm is too weak to capture the contribution of the boundary layer component of the true solution, so balanced norms have been used by many authors to give more satisfactory error bounds for solutions computed using various types of finite element method. But for the LDG method, up to now no optimal-order balanced-norm error estimate has been derived. In this paper, we consider an LDG method with central numerical flux on a Shishkin mesh. Using the superconvergence property of the local <span>\\\\(L^2\\\\)</span> projector and some local coupled projections around the two transition points of the mesh, we prove an optimal-order balanced-norm error estimate for the computed solution; that is, when piecewise polynomials of degree <i>k</i> are used on a Shishkin mesh with <i>N</i> mesh intervals, in the balanced norm we establish <span>\\\\(O((N^{-1}\\\\ln N)^{k+1})\\\\)</span> convergence when <i>k</i> is even and <span>\\\\(O((N^{-1}\\\\ln N)^{k})\\\\)</span> when <i>k</i> is odd. Numerical experiments confirm the sharpness of these error bounds.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02602-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02602-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

用局部非连续伽勒金(LDG)有限元方法对一维奇异扰动反应扩散问题进行数值求解。对于这类问题,标准能量规范太弱,无法捕捉边界层成分对真实解的贡献,因此许多学者使用平衡规范为使用各种有限元方法计算的解提供更令人满意的误差边界。但对于 LDG 方法,迄今为止还没有推导出最佳阶平衡规范误差估计值。在本文中,我们考虑在 Shishkin 网格上采用中心数值通量的 LDG 方法。利用局部(L^2\)投影器的超收敛特性和网格两个过渡点周围的一些局部耦合投影,我们证明了计算解的最优阶平衡规范误差估计;也就是说,当在具有 N 个网格间隔的 Shishkin 网格上使用度数为 k 的分片多项式时,在平衡规范中,当 k 为偶数时,我们建立了 \(O((N^{-1}\ln N)^{k+1})\) 收敛性;当 k 为奇数时,我们建立了 \(O((N^{-1}\ln N)^{k})\) 收敛性。数值实验证实了这些误差界限的精确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimal Balanced-Norm Error Estimate of the LDG Method for Reaction–Diffusion Problems I: The One-Dimensional Case

Optimal Balanced-Norm Error Estimate of the LDG Method for Reaction–Diffusion Problems I: The One-Dimensional Case

A singularly perturbed reaction–diffusion problem in 1D is solved numerically by a local discontinuous Galerkin (LDG) finite element method. For this type of problem the standard energy norm is too weak to capture the contribution of the boundary layer component of the true solution, so balanced norms have been used by many authors to give more satisfactory error bounds for solutions computed using various types of finite element method. But for the LDG method, up to now no optimal-order balanced-norm error estimate has been derived. In this paper, we consider an LDG method with central numerical flux on a Shishkin mesh. Using the superconvergence property of the local \(L^2\) projector and some local coupled projections around the two transition points of the mesh, we prove an optimal-order balanced-norm error estimate for the computed solution; that is, when piecewise polynomials of degree k are used on a Shishkin mesh with N mesh intervals, in the balanced norm we establish \(O((N^{-1}\ln N)^{k+1})\) convergence when k is even and \(O((N^{-1}\ln N)^{k})\) when k is odd. Numerical experiments confirm the sharpness of these error bounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信