斯托克斯方程的各向异性弱过度惩罚对称内部惩罚法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hiroki Ishizaka
{"title":"斯托克斯方程的各向异性弱过度惩罚对称内部惩罚法","authors":"Hiroki Ishizaka","doi":"10.1007/s10915-024-02598-y","DOIUrl":null,"url":null,"abstract":"<p>In this study, we investigate an anisotropic weakly over-penalised symmetric interior penalty method for the Stokes equation on convex domains. Our approach is a simple discontinuous Galerkin method similar to the Crouzeix–Raviart finite element method. As our primary contribution, we show a new proof for the consistency term, which allows us to obtain an estimate of the anisotropic consistency error. The key idea of the proof is to apply the relation between the Raviart–Thomas finite element space and a discontinuous space. While inf-sup stable schemes of the discontinuous Galerkin method on shape-regular mesh partitions have been widely discussed, our results show that the Stokes element satisfies the inf-sup condition on anisotropic meshes. Furthermore, we provide an error estimate in an energy norm on anisotropic meshes. In numerical experiments, we compare calculation results for standard and anisotropic mesh partitions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic Weakly Over-Penalised Symmetric Interior Penalty Method for the Stokes Equation\",\"authors\":\"Hiroki Ishizaka\",\"doi\":\"10.1007/s10915-024-02598-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we investigate an anisotropic weakly over-penalised symmetric interior penalty method for the Stokes equation on convex domains. Our approach is a simple discontinuous Galerkin method similar to the Crouzeix–Raviart finite element method. As our primary contribution, we show a new proof for the consistency term, which allows us to obtain an estimate of the anisotropic consistency error. The key idea of the proof is to apply the relation between the Raviart–Thomas finite element space and a discontinuous space. While inf-sup stable schemes of the discontinuous Galerkin method on shape-regular mesh partitions have been widely discussed, our results show that the Stokes element satisfies the inf-sup condition on anisotropic meshes. Furthermore, we provide an error estimate in an energy norm on anisotropic meshes. In numerical experiments, we compare calculation results for standard and anisotropic mesh partitions.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02598-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02598-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们研究了凸域上斯托克斯方程的各向异性弱过惩罚对称内部惩罚方法。我们的方法是一种简单的非连续 Galerkin 方法,类似于 Crouzeix-Raviart 有限元方法。作为我们的主要贡献,我们展示了一致性项的新证明,这使我们能够获得各向异性一致性误差的估计值。证明的关键思路是应用 Raviart-Thomas 有限元空间与非连续空间之间的关系。虽然形状规则网格分区上的非连续 Galerkin 方法的 inf-sup 稳定方案已被广泛讨论,但我们的结果表明斯托克斯元素在各向异性网格上满足 inf-sup 条件。此外,我们还提供了各向异性网格上能量规范的误差估计。在数值实验中,我们比较了标准网格分区和各向异性网格分区的计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anisotropic Weakly Over-Penalised Symmetric Interior Penalty Method for the Stokes Equation

Anisotropic Weakly Over-Penalised Symmetric Interior Penalty Method for the Stokes Equation

In this study, we investigate an anisotropic weakly over-penalised symmetric interior penalty method for the Stokes equation on convex domains. Our approach is a simple discontinuous Galerkin method similar to the Crouzeix–Raviart finite element method. As our primary contribution, we show a new proof for the consistency term, which allows us to obtain an estimate of the anisotropic consistency error. The key idea of the proof is to apply the relation between the Raviart–Thomas finite element space and a discontinuous space. While inf-sup stable schemes of the discontinuous Galerkin method on shape-regular mesh partitions have been widely discussed, our results show that the Stokes element satisfies the inf-sup condition on anisotropic meshes. Furthermore, we provide an error estimate in an energy norm on anisotropic meshes. In numerical experiments, we compare calculation results for standard and anisotropic mesh partitions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信