Antunes Staffolani, Leonardo Sbrascini, Luca Bottoni, Luca Minnetti, Hamideh Darjazi, Angela Trapananti, Francesco Paparoni, Seyed Javad Rezvani, Marco Minicucci, Messaoud Harfouche and Francesco Nobili
{"title":"作为纳离子电池可持续阳极材料的 γ-Fe2O3 和还原氧化石墨烯复合材料的电化学特性分析","authors":"Antunes Staffolani, Leonardo Sbrascini, Luca Bottoni, Luca Minnetti, Hamideh Darjazi, Angela Trapananti, Francesco Paparoni, Seyed Javad Rezvani, Marco Minicucci, Messaoud Harfouche and Francesco Nobili","doi":"10.1039/D4YA00335G","DOIUrl":null,"url":null,"abstract":"<p >In this paper we report the synthesis and characterization of a γ-Fe<small><sub>2</sub></small>O<small><sub>3</sub></small>/reduced graphene oxide composite anode for Na-ion batteries. The nanocomposite anode is synthesized by a facile and green method. Structural and morphological characterization highlights a small γ-Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> particle size and their successful embedding in the carbonaceous matrix. Electrochemical characterization reveals a high specific capacity of ≈300 mA h g<small><sup>−1</sup></small> at 1000 mA g<small><sup>−1</sup></small>, while at 5 A g<small><sup>−1</sup></small> a capacity of 113 mA h g<small><sup>−1</sup></small> is retained. Cyclic voltammetry at different scan rates, impedance spectroscopy, and <em>ex situ</em> Raman measurements evidence a redox pseudocapacitive behavior and full reversibility of the conversion reaction. The green synthesis coupled to the high specific capacity and rate capability make the proposed γ-Fe<small><sub>2</sub></small>O<small><sub>3</sub></small>/rGO nanocomposite a very promising candidate anode material for sustainable Na-ion batteries.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 7","pages":" 1726-1736"},"PeriodicalIF":3.2000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00335g?page=search","citationCount":"0","resultStr":"{\"title\":\"Electrochemical characterization of γ-Fe2O3 and a reduced graphene oxide composite as a sustainable anode material for Na-ion batteries†\",\"authors\":\"Antunes Staffolani, Leonardo Sbrascini, Luca Bottoni, Luca Minnetti, Hamideh Darjazi, Angela Trapananti, Francesco Paparoni, Seyed Javad Rezvani, Marco Minicucci, Messaoud Harfouche and Francesco Nobili\",\"doi\":\"10.1039/D4YA00335G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this paper we report the synthesis and characterization of a γ-Fe<small><sub>2</sub></small>O<small><sub>3</sub></small>/reduced graphene oxide composite anode for Na-ion batteries. The nanocomposite anode is synthesized by a facile and green method. Structural and morphological characterization highlights a small γ-Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> particle size and their successful embedding in the carbonaceous matrix. Electrochemical characterization reveals a high specific capacity of ≈300 mA h g<small><sup>−1</sup></small> at 1000 mA g<small><sup>−1</sup></small>, while at 5 A g<small><sup>−1</sup></small> a capacity of 113 mA h g<small><sup>−1</sup></small> is retained. Cyclic voltammetry at different scan rates, impedance spectroscopy, and <em>ex situ</em> Raman measurements evidence a redox pseudocapacitive behavior and full reversibility of the conversion reaction. The green synthesis coupled to the high specific capacity and rate capability make the proposed γ-Fe<small><sub>2</sub></small>O<small><sub>3</sub></small>/rGO nanocomposite a very promising candidate anode material for sustainable Na-ion batteries.</p>\",\"PeriodicalId\":72913,\"journal\":{\"name\":\"Energy advances\",\"volume\":\" 7\",\"pages\":\" 1726-1736\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00335g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ya/d4ya00335g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ya/d4ya00335g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们报告了γ-Fe2O3/还原氧化石墨烯复合负极的合成和表征。这种纳米复合阳极是通过一种简便、绿色的方法合成的。结构和形态表征表明,γ-Fe2O3 的粒径较小,并能成功嵌入碳基质中。电化学特性分析表明,在 1000 mA g-1 电流条件下,γ-Fe2O3 的比容量≈300 mA h g-1,而在 5 A g-1 电流条件下,γ-Fe2O3 的比容量为 113 mA h g-1。不同扫描速率下的循环伏安法、阻抗光谱法和原位拉曼测量法证明了氧化还原假电容行为和转换反应的完全可逆性。绿色合成、高比容量和高倍率能力使所提出的γ-Fe2O3/rGO 纳米复合材料成为一种非常有前途的可持续负离子电池的候选阳极材料。
Electrochemical characterization of γ-Fe2O3 and a reduced graphene oxide composite as a sustainable anode material for Na-ion batteries†
In this paper we report the synthesis and characterization of a γ-Fe2O3/reduced graphene oxide composite anode for Na-ion batteries. The nanocomposite anode is synthesized by a facile and green method. Structural and morphological characterization highlights a small γ-Fe2O3 particle size and their successful embedding in the carbonaceous matrix. Electrochemical characterization reveals a high specific capacity of ≈300 mA h g−1 at 1000 mA g−1, while at 5 A g−1 a capacity of 113 mA h g−1 is retained. Cyclic voltammetry at different scan rates, impedance spectroscopy, and ex situ Raman measurements evidence a redox pseudocapacitive behavior and full reversibility of the conversion reaction. The green synthesis coupled to the high specific capacity and rate capability make the proposed γ-Fe2O3/rGO nanocomposite a very promising candidate anode material for sustainable Na-ion batteries.