Ling-Zheng Meng, Li-Chen Zhao, Thomas Busch and Yongping Zhang
{"title":"在愈合长度尺度上控制暗孤子","authors":"Ling-Zheng Meng, Li-Chen Zhao, Thomas Busch and Yongping Zhang","doi":"10.1088/1361-6455/ad5895","DOIUrl":null,"url":null,"abstract":"While usually the optical diffraction limit is setting a limit for the lengthscales on which a typical alkali Bose–Einstein condensate can be controlled, we show that in certain situations control via matter waves can achieve smaller resolutions. For this we consider a small number of impurity atoms which are trapped inside the density dip of a dark soliton state and show that any grey soliton state can be obtained by selectively driving the impurity atoms. This allows to fully control the position and velocity of the dark soliton, and also study controlled collisions between these non-linear objects.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlling dark solitons on the healing length scale\",\"authors\":\"Ling-Zheng Meng, Li-Chen Zhao, Thomas Busch and Yongping Zhang\",\"doi\":\"10.1088/1361-6455/ad5895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While usually the optical diffraction limit is setting a limit for the lengthscales on which a typical alkali Bose–Einstein condensate can be controlled, we show that in certain situations control via matter waves can achieve smaller resolutions. For this we consider a small number of impurity atoms which are trapped inside the density dip of a dark soliton state and show that any grey soliton state can be obtained by selectively driving the impurity atoms. This allows to fully control the position and velocity of the dark soliton, and also study controlled collisions between these non-linear objects.\",\"PeriodicalId\":16826,\"journal\":{\"name\":\"Journal of Physics B: Atomic, Molecular and Optical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics B: Atomic, Molecular and Optical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6455/ad5895\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics B: Atomic, Molecular and Optical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6455/ad5895","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Controlling dark solitons on the healing length scale
While usually the optical diffraction limit is setting a limit for the lengthscales on which a typical alkali Bose–Einstein condensate can be controlled, we show that in certain situations control via matter waves can achieve smaller resolutions. For this we consider a small number of impurity atoms which are trapped inside the density dip of a dark soliton state and show that any grey soliton state can be obtained by selectively driving the impurity atoms. This allows to fully control the position and velocity of the dark soliton, and also study controlled collisions between these non-linear objects.
期刊介绍:
Published twice-monthly (24 issues per year), Journal of Physics B: Atomic, Molecular and Optical Physics covers the study of atoms, ions, molecules and clusters, and their structure and interactions with particles, photons or fields. The journal also publishes articles dealing with those aspects of spectroscopy, quantum optics and non-linear optics, laser physics, astrophysics, plasma physics, chemical physics, optical cooling and trapping and other investigations where the objects of study are the elementary atomic, ionic or molecular properties of processes.