声学中的不确定性分析:扰动法和等几何边界元法

IF 8.7 2区 工程技术 Q1 Mathematics
Leilei Chen, Haojie Lian, Ruijin Huo, Jing Du, Weisong Liu, Zhuxuan Meng, Stéphane P. A. Bordas
{"title":"声学中的不确定性分析:扰动法和等几何边界元法","authors":"Leilei Chen, Haojie Lian, Ruijin Huo, Jing Du, Weisong Liu, Zhuxuan Meng, Stéphane P. A. Bordas","doi":"10.1007/s00366-024-02018-7","DOIUrl":null,"url":null,"abstract":"<p>This study proposes a generalized <i>n</i>th-order perturbation method based on (isogeometric) boundary element methods for uncertainty analysis in 3D acoustic scattering problems. In this paper, for the first time, we derive <i>n</i>th-order Taylor expansions of 3D acoustic boundary integral equations, taking incident wave frequency as a random input variable. In addition, subdivision surface basis functions used in geometric modeling are employed to discretize the generalized <i>n</i>th-order derivative boundary integral equations, in order to avoid cumbersome meshing procedure and retain geometric accuracy. Moreover, the fast multipole method is introduced to accelerate the stochastic perturbation analysis with boundary element methods. Numerical examples are given to demonstrate the accuracy and efficiency of the proposed uncertainty quantification algorithm.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"74 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty analysis in acoustics: perturbation methods and isogeometric boundary element methods\",\"authors\":\"Leilei Chen, Haojie Lian, Ruijin Huo, Jing Du, Weisong Liu, Zhuxuan Meng, Stéphane P. A. Bordas\",\"doi\":\"10.1007/s00366-024-02018-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study proposes a generalized <i>n</i>th-order perturbation method based on (isogeometric) boundary element methods for uncertainty analysis in 3D acoustic scattering problems. In this paper, for the first time, we derive <i>n</i>th-order Taylor expansions of 3D acoustic boundary integral equations, taking incident wave frequency as a random input variable. In addition, subdivision surface basis functions used in geometric modeling are employed to discretize the generalized <i>n</i>th-order derivative boundary integral equations, in order to avoid cumbersome meshing procedure and retain geometric accuracy. Moreover, the fast multipole method is introduced to accelerate the stochastic perturbation analysis with boundary element methods. Numerical examples are given to demonstrate the accuracy and efficiency of the proposed uncertainty quantification algorithm.</p>\",\"PeriodicalId\":11696,\"journal\":{\"name\":\"Engineering with Computers\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering with Computers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00366-024-02018-7\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-02018-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种基于(等几何)边界元方法的广义 nth 阶扰动方法,用于三维声散射问题的不确定性分析。本文首次将入射波频率作为随机输入变量,推导出三维声学边界积分方程的 nth 阶泰勒展开。此外,为了避免繁琐的网格划分过程并保持几何精度,我们采用了几何建模中使用的细分曲面基函数来离散广义 nth 阶导数边界积分方程。此外,还引入了快速多极子方法,以加速边界元方法的随机扰动分析。通过给出数值示例,证明了所提出的不确定性量化算法的准确性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Uncertainty analysis in acoustics: perturbation methods and isogeometric boundary element methods

Uncertainty analysis in acoustics: perturbation methods and isogeometric boundary element methods

This study proposes a generalized nth-order perturbation method based on (isogeometric) boundary element methods for uncertainty analysis in 3D acoustic scattering problems. In this paper, for the first time, we derive nth-order Taylor expansions of 3D acoustic boundary integral equations, taking incident wave frequency as a random input variable. In addition, subdivision surface basis functions used in geometric modeling are employed to discretize the generalized nth-order derivative boundary integral equations, in order to avoid cumbersome meshing procedure and retain geometric accuracy. Moreover, the fast multipole method is introduced to accelerate the stochastic perturbation analysis with boundary element methods. Numerical examples are given to demonstrate the accuracy and efficiency of the proposed uncertainty quantification algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering with Computers
Engineering with Computers 工程技术-工程:机械
CiteScore
16.50
自引率
2.30%
发文量
203
审稿时长
9 months
期刊介绍: Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信