{"title":"具有单一共轭渐开线类的简单群的二元作用","authors":"Nick Gill, Pierre Guillot","doi":"10.1515/jgth-2024-0066","DOIUrl":null,"url":null,"abstract":"We continue our investigation of binary actions of simple groups. In this paper, we demonstrate a connection between the graph <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"script\">C</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2024-0066_ineq_0001.png\"/> <jats:tex-math>\\Gamma(\\mathcal{C})</jats:tex-math> </jats:alternatives> </jats:inline-formula> based on the conjugacy class 𝒞 of the group 𝐺, which was introduced in our previous work, and the notion of a strongly embedded subgroup of 𝐺. We exploit this connection to prove a result concerning the binary actions of finite simple groups that contain a single conjugacy class of involutions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The binary actions of simple groups with a single conjugacy class of involutions\",\"authors\":\"Nick Gill, Pierre Guillot\",\"doi\":\"10.1515/jgth-2024-0066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We continue our investigation of binary actions of simple groups. In this paper, we demonstrate a connection between the graph <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Γ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi mathvariant=\\\"script\\\">C</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jgth-2024-0066_ineq_0001.png\\\"/> <jats:tex-math>\\\\Gamma(\\\\mathcal{C})</jats:tex-math> </jats:alternatives> </jats:inline-formula> based on the conjugacy class 𝒞 of the group 𝐺, which was introduced in our previous work, and the notion of a strongly embedded subgroup of 𝐺. We exploit this connection to prove a result concerning the binary actions of finite simple groups that contain a single conjugacy class of involutions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2024-0066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2024-0066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们继续研究简单群的二元作用。在本文中,我们证明了基于群𝐺 的共轭类 𝒞 的图Γ ( C ) \Gamma(\mathcal{C})与𝐺 的强嵌入子群概念之间的联系。我们利用这种联系证明了一个关于有限简单群的二元作用的结果,这些有限简单群包含一个渐开线的共轭类。
The binary actions of simple groups with a single conjugacy class of involutions
We continue our investigation of binary actions of simple groups. In this paper, we demonstrate a connection between the graph Γ(C)\Gamma(\mathcal{C}) based on the conjugacy class 𝒞 of the group 𝐺, which was introduced in our previous work, and the notion of a strongly embedded subgroup of 𝐺. We exploit this connection to prove a result concerning the binary actions of finite simple groups that contain a single conjugacy class of involutions.