合理设计用于钠离子电池的实用层状过渡金属氧化物阴极材料

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Yan Wang, Ning Ding, Rui Zhang, Guanhua Jin, Dan Sun, Yougen Tang, Haiyan Wang
{"title":"合理设计用于钠离子电池的实用层状过渡金属氧化物阴极材料","authors":"Yan Wang,&nbsp;Ning Ding,&nbsp;Rui Zhang,&nbsp;Guanhua Jin,&nbsp;Dan Sun,&nbsp;Yougen Tang,&nbsp;Haiyan Wang","doi":"10.1007/s11705-024-2435-z","DOIUrl":null,"url":null,"abstract":"<div><p>Sodium-ion batteries (SIBs), which serve as alternatives or supplements to lithium-ion batteries, have been developed rapidly in recent years. Designing advanced high-performance layered Na<sub><i>x</i></sub>TMO<sub>2</sub> cathode materials is beneficial for accelerating the commercialization of SIBs. Herein, the recent research progress on scalable synthesis methods, challenges on the path to commercialization and practical material design strategies for layered Na<sub><i>x</i></sub>TMO<sub>2</sub> cathode materials is summarized. Co-precipitation method and solid-phase method are commonly used to synthesize Na<sub><i>x</i></sub>TMO<sub>2</sub> on mass production and show their own advantages and disadvantages in terms of manufacturing cost, operative difficulty, sample quality and so on. To overcome drawbacks of layered Na<sub><i>x</i></sub>TMO<sub>2</sub> cathode materials and meet the requirements for practical application, a detailed and deep understanding of development trends of layered Na<sub><i>x</i></sub>TMO<sub>2</sub> cathode materials is also provided, including high specific energy materials, high-entropy oxides, single crystal materials, wide operation temperature materials and high air stability materials. This work can provide useful guidance in developing practical layered Na<sub><i>x</i></sub>TMO<sub>2</sub> cathode materials for commercial SIBs.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 7","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational design of practical layered transition metal oxide cathode materials for sodium-ion batteries\",\"authors\":\"Yan Wang,&nbsp;Ning Ding,&nbsp;Rui Zhang,&nbsp;Guanhua Jin,&nbsp;Dan Sun,&nbsp;Yougen Tang,&nbsp;Haiyan Wang\",\"doi\":\"10.1007/s11705-024-2435-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sodium-ion batteries (SIBs), which serve as alternatives or supplements to lithium-ion batteries, have been developed rapidly in recent years. Designing advanced high-performance layered Na<sub><i>x</i></sub>TMO<sub>2</sub> cathode materials is beneficial for accelerating the commercialization of SIBs. Herein, the recent research progress on scalable synthesis methods, challenges on the path to commercialization and practical material design strategies for layered Na<sub><i>x</i></sub>TMO<sub>2</sub> cathode materials is summarized. Co-precipitation method and solid-phase method are commonly used to synthesize Na<sub><i>x</i></sub>TMO<sub>2</sub> on mass production and show their own advantages and disadvantages in terms of manufacturing cost, operative difficulty, sample quality and so on. To overcome drawbacks of layered Na<sub><i>x</i></sub>TMO<sub>2</sub> cathode materials and meet the requirements for practical application, a detailed and deep understanding of development trends of layered Na<sub><i>x</i></sub>TMO<sub>2</sub> cathode materials is also provided, including high specific energy materials, high-entropy oxides, single crystal materials, wide operation temperature materials and high air stability materials. This work can provide useful guidance in developing practical layered Na<sub><i>x</i></sub>TMO<sub>2</sub> cathode materials for commercial SIBs.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"18 7\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-024-2435-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2435-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

钠离子电池(SIB)是锂离子电池的替代品或补充品,近年来发展迅速。设计先进的高性能层状 NaxTMO2 正极材料有利于加速钠离子电池的商业化。本文总结了层状 NaxTMO2 负极材料可扩展合成方法的最新研究进展、商业化道路上的挑战以及实用的材料设计策略。共沉淀法和固相法是大规模合成 NaxTMO2 的常用方法,在制造成本、操作难度、样品质量等方面各有优缺点。为了克服层状 NaxTMO2 正极材料的缺点,满足实际应用的要求,本文还详细深入地介绍了层状 NaxTMO2 正极材料的发展趋势,包括高比能材料、高熵氧化物、单晶材料、宽操作温度材料和高空气稳定性材料。这项工作可为开发用于商业 SIB 的实用层状 NaxTMO2 阴极材料提供有益的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rational design of practical layered transition metal oxide cathode materials for sodium-ion batteries

Rational design of practical layered transition metal oxide cathode materials for sodium-ion batteries

Sodium-ion batteries (SIBs), which serve as alternatives or supplements to lithium-ion batteries, have been developed rapidly in recent years. Designing advanced high-performance layered NaxTMO2 cathode materials is beneficial for accelerating the commercialization of SIBs. Herein, the recent research progress on scalable synthesis methods, challenges on the path to commercialization and practical material design strategies for layered NaxTMO2 cathode materials is summarized. Co-precipitation method and solid-phase method are commonly used to synthesize NaxTMO2 on mass production and show their own advantages and disadvantages in terms of manufacturing cost, operative difficulty, sample quality and so on. To overcome drawbacks of layered NaxTMO2 cathode materials and meet the requirements for practical application, a detailed and deep understanding of development trends of layered NaxTMO2 cathode materials is also provided, including high specific energy materials, high-entropy oxides, single crystal materials, wide operation temperature materials and high air stability materials. This work can provide useful guidance in developing practical layered NaxTMO2 cathode materials for commercial SIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信