Sundus Azhar, Khuram Shahzad Ahmad, Isaac Abrahams, Wang Lin, Ram K. Gupta, Munirah D. Albaqami, Saikh Mohammad, Mahwash Mahar Gul
{"title":"使用绿色封端剂合成 ZrO2-NdO 基混合纳米材料并将其功能化作为能源设备的电极材料:伪电容器和水分离","authors":"Sundus Azhar, Khuram Shahzad Ahmad, Isaac Abrahams, Wang Lin, Ram K. Gupta, Munirah D. Albaqami, Saikh Mohammad, Mahwash Mahar Gul","doi":"10.1002/apj.3119","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the environmentally friendly synthesis of ZrO<sub>2</sub>-NdO mixed nanomaterial using green reducing and capping agents derived from the plant <i>Amaranthus viridis</i>. X-ray diffraction (XRD) analysis confirmed the successful synthesis of the mixed nanomaterial, revealing an optical band gap of 2.5 eV. The morphology was characterized by spherical-shaped particles with an average size ranging from 66 to 77 nm. The synthesized ZrO<sub>2</sub>-NdO mixed nanomaterial was evaluated for its potential application as an electrode material in energy devices, specifically for pseudocapacitors and water splitting studies. Electrochemical performance was assessed using cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) techniques. Notably, a specific capacitance of 573.5 F/g was achieved through CV at a scan rate of 2 mV/s. Fabricated electrocatalyst was further analyzed for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), and the results showed better over potential value of 164 mV for HER studies. The stability analysis further endorsed the large-scale commercialization possibility of ZrO-NdO-based electrode material.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of ZrO2-NdO-based mixed nanomaterial using green capping agent and its functionalization as electrode material for energy devices: Pseudo capacitors and water splitting\",\"authors\":\"Sundus Azhar, Khuram Shahzad Ahmad, Isaac Abrahams, Wang Lin, Ram K. Gupta, Munirah D. Albaqami, Saikh Mohammad, Mahwash Mahar Gul\",\"doi\":\"10.1002/apj.3119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the environmentally friendly synthesis of ZrO<sub>2</sub>-NdO mixed nanomaterial using green reducing and capping agents derived from the plant <i>Amaranthus viridis</i>. X-ray diffraction (XRD) analysis confirmed the successful synthesis of the mixed nanomaterial, revealing an optical band gap of 2.5 eV. The morphology was characterized by spherical-shaped particles with an average size ranging from 66 to 77 nm. The synthesized ZrO<sub>2</sub>-NdO mixed nanomaterial was evaluated for its potential application as an electrode material in energy devices, specifically for pseudocapacitors and water splitting studies. Electrochemical performance was assessed using cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) techniques. Notably, a specific capacitance of 573.5 F/g was achieved through CV at a scan rate of 2 mV/s. Fabricated electrocatalyst was further analyzed for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), and the results showed better over potential value of 164 mV for HER studies. The stability analysis further endorsed the large-scale commercialization possibility of ZrO-NdO-based electrode material.</p>\",\"PeriodicalId\":49237,\"journal\":{\"name\":\"Asia-Pacific Journal of Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apj.3119\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3119","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Synthesis of ZrO2-NdO-based mixed nanomaterial using green capping agent and its functionalization as electrode material for energy devices: Pseudo capacitors and water splitting
This study investigates the environmentally friendly synthesis of ZrO2-NdO mixed nanomaterial using green reducing and capping agents derived from the plant Amaranthus viridis. X-ray diffraction (XRD) analysis confirmed the successful synthesis of the mixed nanomaterial, revealing an optical band gap of 2.5 eV. The morphology was characterized by spherical-shaped particles with an average size ranging from 66 to 77 nm. The synthesized ZrO2-NdO mixed nanomaterial was evaluated for its potential application as an electrode material in energy devices, specifically for pseudocapacitors and water splitting studies. Electrochemical performance was assessed using cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) techniques. Notably, a specific capacitance of 573.5 F/g was achieved through CV at a scan rate of 2 mV/s. Fabricated electrocatalyst was further analyzed for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), and the results showed better over potential value of 164 mV for HER studies. The stability analysis further endorsed the large-scale commercialization possibility of ZrO-NdO-based electrode material.
期刊介绍:
Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration.
Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).