流化条件下 HZSM-5 分子筛颗粒的损耗行为分析

IF 1.4 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Zhiwei Huang, Feng Gao, Yang Miao
{"title":"流化条件下 HZSM-5 分子筛颗粒的损耗行为分析","authors":"Zhiwei Huang,&nbsp;Feng Gao,&nbsp;Yang Miao","doi":"10.1002/apj.3111","DOIUrl":null,"url":null,"abstract":"<p>The attrition behavior of HZSM-5 zeolite catalyst particles at room temperature was investigated in a laboratory-scale fluidized bed. The effects of three fluidization conditions on particle attrition were investigated, and a new attrition model was proposed. The results demonstrate that the attrition rate is inversely proportional to the initial particle size and proportional to the apparent gas velocity. After increasing to 80 μm and .3 m/s respectively, they are no longer the main factor affecting attrition. The effect of bed pressure on attrition rate is nonlinear, and the lowest attrition rate is obtained when the diameter-height ratio is 1:1. Unsteady attrition stage can be divided into initial stage and deceleration stage. Surface delamination dominates particle attrition throughout the whole process, and bulk fracture is the dominant mechanism only in the deceleration stage. Based on the Gwyn equation, a new attrition model in the form of cubic polynomial is established with the ratio of total attrition rate to unstable attrition rate P as a parameter. The model has high accuracy and repeatability and is suitable for various fluidization conditions. It can effectively describe the attrition process and change rule of particles and reasonably predict the fluidization attrition rate of particles.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"19 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of HZSM-5 molecular sieve particles attrition behavior under fluidized conditions\",\"authors\":\"Zhiwei Huang,&nbsp;Feng Gao,&nbsp;Yang Miao\",\"doi\":\"10.1002/apj.3111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The attrition behavior of HZSM-5 zeolite catalyst particles at room temperature was investigated in a laboratory-scale fluidized bed. The effects of three fluidization conditions on particle attrition were investigated, and a new attrition model was proposed. The results demonstrate that the attrition rate is inversely proportional to the initial particle size and proportional to the apparent gas velocity. After increasing to 80 μm and .3 m/s respectively, they are no longer the main factor affecting attrition. The effect of bed pressure on attrition rate is nonlinear, and the lowest attrition rate is obtained when the diameter-height ratio is 1:1. Unsteady attrition stage can be divided into initial stage and deceleration stage. Surface delamination dominates particle attrition throughout the whole process, and bulk fracture is the dominant mechanism only in the deceleration stage. Based on the Gwyn equation, a new attrition model in the form of cubic polynomial is established with the ratio of total attrition rate to unstable attrition rate P as a parameter. The model has high accuracy and repeatability and is suitable for various fluidization conditions. It can effectively describe the attrition process and change rule of particles and reasonably predict the fluidization attrition rate of particles.</p>\",\"PeriodicalId\":49237,\"journal\":{\"name\":\"Asia-Pacific Journal of Chemical Engineering\",\"volume\":\"19 5\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apj.3111\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3111","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

在实验室规模的流化床中研究了室温下 HZSM-5 沸石催化剂颗粒的损耗行为。研究了三种流化条件对颗粒损耗的影响,并提出了一个新的损耗模型。结果表明,磨损率与初始粒度成反比,与表观气体速度成正比。分别增加到 80 μm 和 .3 m/s 后,它们不再是影响磨损的主要因素。床层压力对磨损率的影响是非线性的,当直径-高度比为 1:1 时,磨损率最低。非稳定磨损阶段可分为初始阶段和减速阶段。在整个过程中,表面分层是颗粒损耗的主要机制,只有在减速阶段,块体断裂才是主要机制。以 Gwyn 方程为基础,以总损耗率与不稳定损耗率之比 P 为参数,建立了立方多项式形式的新损耗模型。该模型具有较高的精度和可重复性,适用于各种流化条件。它能有效地描述颗粒的损耗过程和变化规律,合理地预测颗粒的流化损耗率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of HZSM-5 molecular sieve particles attrition behavior under fluidized conditions

The attrition behavior of HZSM-5 zeolite catalyst particles at room temperature was investigated in a laboratory-scale fluidized bed. The effects of three fluidization conditions on particle attrition were investigated, and a new attrition model was proposed. The results demonstrate that the attrition rate is inversely proportional to the initial particle size and proportional to the apparent gas velocity. After increasing to 80 μm and .3 m/s respectively, they are no longer the main factor affecting attrition. The effect of bed pressure on attrition rate is nonlinear, and the lowest attrition rate is obtained when the diameter-height ratio is 1:1. Unsteady attrition stage can be divided into initial stage and deceleration stage. Surface delamination dominates particle attrition throughout the whole process, and bulk fracture is the dominant mechanism only in the deceleration stage. Based on the Gwyn equation, a new attrition model in the form of cubic polynomial is established with the ratio of total attrition rate to unstable attrition rate P as a parameter. The model has high accuracy and repeatability and is suitable for various fluidization conditions. It can effectively describe the attrition process and change rule of particles and reasonably predict the fluidization attrition rate of particles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.10%
发文量
111
期刊介绍: Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration. Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信