层状软结构中异质界面剪切波的全内反射 (TIR) 行为

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ming Zhao, Wentao Jiang, Qingyuan Wang, Ying Liang, Haidong Fan, Xiaobao Tian
{"title":"层状软结构中异质界面剪切波的全内反射 (TIR) 行为","authors":"Ming Zhao,&nbsp;Wentao Jiang,&nbsp;Qingyuan Wang,&nbsp;Ying Liang,&nbsp;Haidong Fan,&nbsp;Xiaobao Tian","doi":"10.1007/s10338-024-00497-1","DOIUrl":null,"url":null,"abstract":"<div><p>The total internal reflection (TIR) behavior of interface shear waves is crucial for ensuring the reliability of dielectric elastomer (DE) devices. However, due to the complex force-electric coupling and large deformation of DEs, the TIR behavior of shear waves in heterogeneous force-electric interface models is still unclear. This study modeled an elastic/DE bi-material interface to analyze the trajectory of out-of-plane shear waves. Employing Dorfmann and Ogden’s nonlinear electroelastic framework and the related linear small incremental motion theory, a method has been developed to control the TIR behavior of interface shear waves. It has been found that the TIR behavior is significantly influenced by the strain-stiffening effect induced by biasing fields. Consequently, a biasing field principle involving preset electric displacement and pre-stretch has been proposed for TIR occurrence. By controlling the pre-stretch and preset electric displacement, active regulation of TIR behavior can be achieved. These results suggest a potential method for achieving autonomous energy shielding to improve the reliability of DE devices.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Total Internal Reflection (TIR) Behavior of Heterogeneous Interface Shear Waves in Layered Soft Structure\",\"authors\":\"Ming Zhao,&nbsp;Wentao Jiang,&nbsp;Qingyuan Wang,&nbsp;Ying Liang,&nbsp;Haidong Fan,&nbsp;Xiaobao Tian\",\"doi\":\"10.1007/s10338-024-00497-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The total internal reflection (TIR) behavior of interface shear waves is crucial for ensuring the reliability of dielectric elastomer (DE) devices. However, due to the complex force-electric coupling and large deformation of DEs, the TIR behavior of shear waves in heterogeneous force-electric interface models is still unclear. This study modeled an elastic/DE bi-material interface to analyze the trajectory of out-of-plane shear waves. Employing Dorfmann and Ogden’s nonlinear electroelastic framework and the related linear small incremental motion theory, a method has been developed to control the TIR behavior of interface shear waves. It has been found that the TIR behavior is significantly influenced by the strain-stiffening effect induced by biasing fields. Consequently, a biasing field principle involving preset electric displacement and pre-stretch has been proposed for TIR occurrence. By controlling the pre-stretch and preset electric displacement, active regulation of TIR behavior can be achieved. These results suggest a potential method for achieving autonomous energy shielding to improve the reliability of DE devices.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10338-024-00497-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-024-00497-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

界面剪切波的全内反射(TIR)行为对于确保介电弹性体(DE)器件的可靠性至关重要。然而,由于介电弹性体复杂的力-电耦合和较大的变形,在异质力-电界面模型中剪切波的 TIR 行为仍不清楚。本研究建立了弹性/DE 双材料界面模型,以分析平面外剪切波的轨迹。利用 Dorfmann 和 Ogden 的非线性电弹性框架和相关的线性小增量运动理论,开发了一种控制界面剪切波 TIR 行为的方法。研究发现,界面剪切波的 TIR 行为受偏置场诱导的应变加固效应影响很大。因此,针对 TIR 的发生,提出了涉及预设电位移和预拉伸的偏置场原理。通过控制预拉伸和预设电位移,可以实现对 TIR 行为的主动调节。这些结果为实现自主能量屏蔽以提高 DE 器件的可靠性提供了一种潜在的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Total Internal Reflection (TIR) Behavior of Heterogeneous Interface Shear Waves in Layered Soft Structure

Total Internal Reflection (TIR) Behavior of Heterogeneous Interface Shear Waves in Layered Soft Structure

The total internal reflection (TIR) behavior of interface shear waves is crucial for ensuring the reliability of dielectric elastomer (DE) devices. However, due to the complex force-electric coupling and large deformation of DEs, the TIR behavior of shear waves in heterogeneous force-electric interface models is still unclear. This study modeled an elastic/DE bi-material interface to analyze the trajectory of out-of-plane shear waves. Employing Dorfmann and Ogden’s nonlinear electroelastic framework and the related linear small incremental motion theory, a method has been developed to control the TIR behavior of interface shear waves. It has been found that the TIR behavior is significantly influenced by the strain-stiffening effect induced by biasing fields. Consequently, a biasing field principle involving preset electric displacement and pre-stretch has been proposed for TIR occurrence. By controlling the pre-stretch and preset electric displacement, active regulation of TIR behavior can be achieved. These results suggest a potential method for achieving autonomous energy shielding to improve the reliability of DE devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信