{"title":"具有共地特性的新型单相高升压有源开关准 Z 源 NNPC 逆变器","authors":"MILAD SHAMOUEI-MILAN;REZA ASGARNIA;MILAD GHAVIPANJEH MARANGALU;KOUROSH KHALAJ MONFARED;YOUSEF NEYSHABOURI;HANI VAHEDI","doi":"10.1109/OJPEL.2024.3417277","DOIUrl":null,"url":null,"abstract":"Quasi-Z source (qZS) multilevel inverters have become popular in sustainable energy systems, particularly in photovoltaic (PV) systems. This study proposes a qZS five-level nested neutral point clamped (5L-NNPC) inverter, benefiting from continuous input current, high voltage gain, and insignificant voltage stress across semiconductors. The proposed topology provides a common ground between the input sources and the inverter's DC link, thus entirely eliminating leakage current, making it a suitable candidate for PV applications. Moreover, model predictive control (MPC) is employed to regulate the voltages of flying capacitors and the output current of the 5L-NNPC inverter. The study also includes analyses of steady-state performance, circuit design, efficiency, and control considerations. Finally, experimental results are presented to validate the converter's performance.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10568300","citationCount":"0","resultStr":"{\"title\":\"A New Single-Phase High Step-Up Active-Switched Quasi Z-Source NNPC Inverter With Common Ground Feature\",\"authors\":\"MILAD SHAMOUEI-MILAN;REZA ASGARNIA;MILAD GHAVIPANJEH MARANGALU;KOUROSH KHALAJ MONFARED;YOUSEF NEYSHABOURI;HANI VAHEDI\",\"doi\":\"10.1109/OJPEL.2024.3417277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quasi-Z source (qZS) multilevel inverters have become popular in sustainable energy systems, particularly in photovoltaic (PV) systems. This study proposes a qZS five-level nested neutral point clamped (5L-NNPC) inverter, benefiting from continuous input current, high voltage gain, and insignificant voltage stress across semiconductors. The proposed topology provides a common ground between the input sources and the inverter's DC link, thus entirely eliminating leakage current, making it a suitable candidate for PV applications. Moreover, model predictive control (MPC) is employed to regulate the voltages of flying capacitors and the output current of the 5L-NNPC inverter. The study also includes analyses of steady-state performance, circuit design, efficiency, and control considerations. Finally, experimental results are presented to validate the converter's performance.\",\"PeriodicalId\":93182,\"journal\":{\"name\":\"IEEE open journal of power electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10568300\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of power electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10568300/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10568300/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
准 Z 源(qZS)多电平逆变器已在可持续能源系统,尤其是光伏(PV)系统中流行起来。本研究提出了一种 qZS 五电平嵌套中性点箝位(5L-NNPC)逆变器,该逆变器具有连续输入电流、高电压增益和跨半导体电压应力小等优点。所提出的拓扑结构在输入源和逆变器的直流链路之间提供了公共接地,从而完全消除了漏电流,使其成为光伏应用的理想选择。此外,还采用了模型预测控制 (MPC) 来调节飞行电容器的电压和 5L-NNPC 逆变器的输出电流。研究还包括对稳态性能、电路设计、效率和控制考虑因素的分析。最后,实验结果验证了变流器的性能。
A New Single-Phase High Step-Up Active-Switched Quasi Z-Source NNPC Inverter With Common Ground Feature
Quasi-Z source (qZS) multilevel inverters have become popular in sustainable energy systems, particularly in photovoltaic (PV) systems. This study proposes a qZS five-level nested neutral point clamped (5L-NNPC) inverter, benefiting from continuous input current, high voltage gain, and insignificant voltage stress across semiconductors. The proposed topology provides a common ground between the input sources and the inverter's DC link, thus entirely eliminating leakage current, making it a suitable candidate for PV applications. Moreover, model predictive control (MPC) is employed to regulate the voltages of flying capacitors and the output current of the 5L-NNPC inverter. The study also includes analyses of steady-state performance, circuit design, efficiency, and control considerations. Finally, experimental results are presented to validate the converter's performance.