{"title":"海上机载风能系统中风筝与平台的相互作用:频率分析和控制方法","authors":"Sofia Trombini , Edoardo Pasta , Lorenzo Fagiano","doi":"10.1016/j.ejcon.2024.101065","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates deep offshore, pumping Airborne Wind Energy systems, focusing on the kite-platform interaction. The considered system includes a 360 m<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> soft-wing kite, connected by a tether to a winch installed on a 10-meter-deep spar with four mooring lines. Wind power is converted into electricity with a feedback controlled periodic trajectory of the kite and corresponding reeling motion of the tether. An analysis of the mutual influence between the platform and the kite dynamics, with different wave regimes, reveals a rather small sensitivity of the flight pattern to the platform oscillations; on the other hand, the frequency of tether force oscillations can be close to the platform resonance peaks, resulting in possible increased fatigue loads and damage of the floating and submerged components. A control design procedure is then proposed to avoid this problem, acting on the kite path planner. Simulation results confirm the effectiveness of the approach.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"80 ","pages":"Article 101065"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the kite-platform interactions in offshore Airborne Wind Energy Systems: Frequency analysis and control approach\",\"authors\":\"Sofia Trombini , Edoardo Pasta , Lorenzo Fagiano\",\"doi\":\"10.1016/j.ejcon.2024.101065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates deep offshore, pumping Airborne Wind Energy systems, focusing on the kite-platform interaction. The considered system includes a 360 m<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> soft-wing kite, connected by a tether to a winch installed on a 10-meter-deep spar with four mooring lines. Wind power is converted into electricity with a feedback controlled periodic trajectory of the kite and corresponding reeling motion of the tether. An analysis of the mutual influence between the platform and the kite dynamics, with different wave regimes, reveals a rather small sensitivity of the flight pattern to the platform oscillations; on the other hand, the frequency of tether force oscillations can be close to the platform resonance peaks, resulting in possible increased fatigue loads and damage of the floating and submerged components. A control design procedure is then proposed to avoid this problem, acting on the kite path planner. Simulation results confirm the effectiveness of the approach.</div></div>\",\"PeriodicalId\":50489,\"journal\":{\"name\":\"European Journal of Control\",\"volume\":\"80 \",\"pages\":\"Article 101065\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0947358024001250\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358024001250","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
On the kite-platform interactions in offshore Airborne Wind Energy Systems: Frequency analysis and control approach
This study investigates deep offshore, pumping Airborne Wind Energy systems, focusing on the kite-platform interaction. The considered system includes a 360 m soft-wing kite, connected by a tether to a winch installed on a 10-meter-deep spar with four mooring lines. Wind power is converted into electricity with a feedback controlled periodic trajectory of the kite and corresponding reeling motion of the tether. An analysis of the mutual influence between the platform and the kite dynamics, with different wave regimes, reveals a rather small sensitivity of the flight pattern to the platform oscillations; on the other hand, the frequency of tether force oscillations can be close to the platform resonance peaks, resulting in possible increased fatigue loads and damage of the floating and submerged components. A control design procedure is then proposed to avoid this problem, acting on the kite path planner. Simulation results confirm the effectiveness of the approach.
期刊介绍:
The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field.
The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering.
The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications.
Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results.
The design and implementation of a successful control system requires the use of a range of techniques:
Modelling
Robustness Analysis
Identification
Optimization
Control Law Design
Numerical analysis
Fault Detection, and so on.