Max van Haren , Kentaro Tsurumoto , Masahiro Mae , Lennart Blanken , Wataru Ohnishi , Tom Oomen
{"title":"在有限时间 ILC 中提高性能和任务灵活性的频域方法","authors":"Max van Haren , Kentaro Tsurumoto , Masahiro Mae , Lennart Blanken , Wataru Ohnishi , Tom Oomen","doi":"10.1016/j.ejcon.2024.101033","DOIUrl":null,"url":null,"abstract":"<div><div>Iterative learning control (ILC) techniques are capable of improving the tracking performance of control systems that repeatedly perform similar tasks by utilizing data from past iterations. The aim of this paper is to achieve both the task flexibility enabled by ILC with basis functions and the performance of frequency-domain ILC, with an intuitive design procedure. The cost function of norm-optimal ILC is determined that recovers frequency-domain ILC, and consequently, the feedforward signal is parameterized in terms of basis functions and frequency-domain ILC. The resulting method has the performance and design procedure of frequency-domain ILC and the task flexibility of basis functions ILC, and are complimentary to each other. Validation on a benchmark example confirms the capabilities of the framework.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"80 ","pages":"Article 101033"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A frequency-domain approach for enhanced performance and task flexibility in finite-time ILC\",\"authors\":\"Max van Haren , Kentaro Tsurumoto , Masahiro Mae , Lennart Blanken , Wataru Ohnishi , Tom Oomen\",\"doi\":\"10.1016/j.ejcon.2024.101033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Iterative learning control (ILC) techniques are capable of improving the tracking performance of control systems that repeatedly perform similar tasks by utilizing data from past iterations. The aim of this paper is to achieve both the task flexibility enabled by ILC with basis functions and the performance of frequency-domain ILC, with an intuitive design procedure. The cost function of norm-optimal ILC is determined that recovers frequency-domain ILC, and consequently, the feedforward signal is parameterized in terms of basis functions and frequency-domain ILC. The resulting method has the performance and design procedure of frequency-domain ILC and the task flexibility of basis functions ILC, and are complimentary to each other. Validation on a benchmark example confirms the capabilities of the framework.</div></div>\",\"PeriodicalId\":50489,\"journal\":{\"name\":\"European Journal of Control\",\"volume\":\"80 \",\"pages\":\"Article 101033\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0947358024000931\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358024000931","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A frequency-domain approach for enhanced performance and task flexibility in finite-time ILC
Iterative learning control (ILC) techniques are capable of improving the tracking performance of control systems that repeatedly perform similar tasks by utilizing data from past iterations. The aim of this paper is to achieve both the task flexibility enabled by ILC with basis functions and the performance of frequency-domain ILC, with an intuitive design procedure. The cost function of norm-optimal ILC is determined that recovers frequency-domain ILC, and consequently, the feedforward signal is parameterized in terms of basis functions and frequency-domain ILC. The resulting method has the performance and design procedure of frequency-domain ILC and the task flexibility of basis functions ILC, and are complimentary to each other. Validation on a benchmark example confirms the capabilities of the framework.
期刊介绍:
The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field.
The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering.
The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications.
Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results.
The design and implementation of a successful control system requires the use of a range of techniques:
Modelling
Robustness Analysis
Identification
Optimization
Control Law Design
Numerical analysis
Fault Detection, and so on.