{"title":"若干高斯数据平均功率的贝叶斯推断","authors":"Giovanni Mana, Carlo Palmisano","doi":"10.1140/epjb/s10051-024-00737-w","DOIUrl":null,"url":null,"abstract":"<p>The uniform prior probability density for the means of normal data leads to inconsistent Bayesian inference of their mean power and jeopardizes the possibility of selecting among different models that explain the data. We reinvestigated the problem avoiding delivering unrecognised information and looking at it in a novel way. Namely, to consider a finite power, we used a normal prior minimally diverging from the uniform one, hyperparameterised by the mean and variance, and left the data to choose the most supported parameters. We also obtained an extended James–Stein estimator averaging the hyper-parameters and avoiding empirical Bayes techniques.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"97 6","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjb/s10051-024-00737-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Bayesian inference of the mean power of several Gaussian data\",\"authors\":\"Giovanni Mana, Carlo Palmisano\",\"doi\":\"10.1140/epjb/s10051-024-00737-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The uniform prior probability density for the means of normal data leads to inconsistent Bayesian inference of their mean power and jeopardizes the possibility of selecting among different models that explain the data. We reinvestigated the problem avoiding delivering unrecognised information and looking at it in a novel way. Namely, to consider a finite power, we used a normal prior minimally diverging from the uniform one, hyperparameterised by the mean and variance, and left the data to choose the most supported parameters. We also obtained an extended James–Stein estimator averaging the hyper-parameters and avoiding empirical Bayes techniques.</p>\",\"PeriodicalId\":787,\"journal\":{\"name\":\"The European Physical Journal B\",\"volume\":\"97 6\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjb/s10051-024-00737-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjb/s10051-024-00737-w\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00737-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Bayesian inference of the mean power of several Gaussian data
The uniform prior probability density for the means of normal data leads to inconsistent Bayesian inference of their mean power and jeopardizes the possibility of selecting among different models that explain the data. We reinvestigated the problem avoiding delivering unrecognised information and looking at it in a novel way. Namely, to consider a finite power, we used a normal prior minimally diverging from the uniform one, hyperparameterised by the mean and variance, and left the data to choose the most supported parameters. We also obtained an extended James–Stein estimator averaging the hyper-parameters and avoiding empirical Bayes techniques.