若干高斯数据平均功率的贝叶斯推断

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Giovanni Mana, Carlo Palmisano
{"title":"若干高斯数据平均功率的贝叶斯推断","authors":"Giovanni Mana,&nbsp;Carlo Palmisano","doi":"10.1140/epjb/s10051-024-00737-w","DOIUrl":null,"url":null,"abstract":"<p>The uniform prior probability density for the means of normal data leads to inconsistent Bayesian inference of their mean power and jeopardizes the possibility of selecting among different models that explain the data. We reinvestigated the problem avoiding delivering unrecognised information and looking at it in a novel way. Namely, to consider a finite power, we used a normal prior minimally diverging from the uniform one, hyperparameterised by the mean and variance, and left the data to choose the most supported parameters. We also obtained an extended James–Stein estimator averaging the hyper-parameters and avoiding empirical Bayes techniques.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"97 6","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjb/s10051-024-00737-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Bayesian inference of the mean power of several Gaussian data\",\"authors\":\"Giovanni Mana,&nbsp;Carlo Palmisano\",\"doi\":\"10.1140/epjb/s10051-024-00737-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The uniform prior probability density for the means of normal data leads to inconsistent Bayesian inference of their mean power and jeopardizes the possibility of selecting among different models that explain the data. We reinvestigated the problem avoiding delivering unrecognised information and looking at it in a novel way. Namely, to consider a finite power, we used a normal prior minimally diverging from the uniform one, hyperparameterised by the mean and variance, and left the data to choose the most supported parameters. We also obtained an extended James–Stein estimator averaging the hyper-parameters and avoiding empirical Bayes techniques.</p>\",\"PeriodicalId\":787,\"journal\":{\"name\":\"The European Physical Journal B\",\"volume\":\"97 6\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjb/s10051-024-00737-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjb/s10051-024-00737-w\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00737-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

摘要 正态数据均值的统一先验概率密度会导致对其均值幂的贝叶斯推断不一致,并危及在解释数据的不同模型中进行选择的可能性。我们重新研究了这个问题,避免提供未识别的信息,并以一种新颖的方式来看待这个问题。也就是说,为了考虑有限幂,我们使用了与均匀先验发散最小的正态先验,通过均值和方差进行超参数化,并让数据来选择支持率最高的参数。我们还获得了一个扩展的詹姆斯-斯坦估计器,它平均了超参数并避免了经验贝叶斯技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bayesian inference of the mean power of several Gaussian data

Bayesian inference of the mean power of several Gaussian data

The uniform prior probability density for the means of normal data leads to inconsistent Bayesian inference of their mean power and jeopardizes the possibility of selecting among different models that explain the data. We reinvestigated the problem avoiding delivering unrecognised information and looking at it in a novel way. Namely, to consider a finite power, we used a normal prior minimally diverging from the uniform one, hyperparameterised by the mean and variance, and left the data to choose the most supported parameters. We also obtained an extended James–Stein estimator averaging the hyper-parameters and avoiding empirical Bayes techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信