{"title":"为鹰嘴豆作物改良鉴定稳定的耐旱高产品系","authors":"Santosh Kumar Gupta, Vikas Dwivedi, Nandakumar Surendra Kute, Philip Francis, Swarup Kumar Parida, Debasis Chattopadhyay","doi":"10.1007/s11105-024-01471-4","DOIUrl":null,"url":null,"abstract":"<p>Chickpea (<i>Cicer arietinum</i> L.) is grown in marginal land with low input and is, therefore, drought-prone. In order to develop a drought-tolerant line, a bi-parental recombinant inbred line (RIL) mapping population was generated by inter-crossing between two varieties JGK3 (ICCV 95334) and Himchana1 (ICCX-810800) having contrasting root traits. Ninety-two genetically diverse RILs of F<sub>8</sub> generation were selected based on their total root length to root dry weight ratio (RL/DW). The leaf relative water content of these RILs under low soil moisture did not show any strong correlation with the RL/DW. Twenty RILs having high RL/DW were evaluated for seed yield in a field under rainfed condition without any supplementary irrigation. The best performing RIL, which performed better than the check varieties, was reevaluated for a further year under rainfed condition. The genotypic constitution of this superior low soil moisture tolerant individual RIL was determined by constructing its recombination map using genome-wide SNPs obtained through genotyping-by-sequencing. The RIL possesses the superior alleles of the genomic QTL region known to govern drought tolerance in chickpea. The phenotypic and genotypic characterization of RILs in our study identified a chickpea pre-breeding line that can be used as a genetic donor for developing drought-tolerant high-yielding chickpea varieties and our results provide an evidence that total root length to root dry weight ratio can be used as a quantitative trait for assessing drought tolerance.</p>","PeriodicalId":20215,"journal":{"name":"Plant Molecular Biology Reporter","volume":"46 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of a Stable Drought-Tolerant High-Yielding Line for Chickpea Crop Improvement\",\"authors\":\"Santosh Kumar Gupta, Vikas Dwivedi, Nandakumar Surendra Kute, Philip Francis, Swarup Kumar Parida, Debasis Chattopadhyay\",\"doi\":\"10.1007/s11105-024-01471-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chickpea (<i>Cicer arietinum</i> L.) is grown in marginal land with low input and is, therefore, drought-prone. In order to develop a drought-tolerant line, a bi-parental recombinant inbred line (RIL) mapping population was generated by inter-crossing between two varieties JGK3 (ICCV 95334) and Himchana1 (ICCX-810800) having contrasting root traits. Ninety-two genetically diverse RILs of F<sub>8</sub> generation were selected based on their total root length to root dry weight ratio (RL/DW). The leaf relative water content of these RILs under low soil moisture did not show any strong correlation with the RL/DW. Twenty RILs having high RL/DW were evaluated for seed yield in a field under rainfed condition without any supplementary irrigation. The best performing RIL, which performed better than the check varieties, was reevaluated for a further year under rainfed condition. The genotypic constitution of this superior low soil moisture tolerant individual RIL was determined by constructing its recombination map using genome-wide SNPs obtained through genotyping-by-sequencing. The RIL possesses the superior alleles of the genomic QTL region known to govern drought tolerance in chickpea. The phenotypic and genotypic characterization of RILs in our study identified a chickpea pre-breeding line that can be used as a genetic donor for developing drought-tolerant high-yielding chickpea varieties and our results provide an evidence that total root length to root dry weight ratio can be used as a quantitative trait for assessing drought tolerance.</p>\",\"PeriodicalId\":20215,\"journal\":{\"name\":\"Plant Molecular Biology Reporter\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Molecular Biology Reporter\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11105-024-01471-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology Reporter","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11105-024-01471-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Identification of a Stable Drought-Tolerant High-Yielding Line for Chickpea Crop Improvement
Chickpea (Cicer arietinum L.) is grown in marginal land with low input and is, therefore, drought-prone. In order to develop a drought-tolerant line, a bi-parental recombinant inbred line (RIL) mapping population was generated by inter-crossing between two varieties JGK3 (ICCV 95334) and Himchana1 (ICCX-810800) having contrasting root traits. Ninety-two genetically diverse RILs of F8 generation were selected based on their total root length to root dry weight ratio (RL/DW). The leaf relative water content of these RILs under low soil moisture did not show any strong correlation with the RL/DW. Twenty RILs having high RL/DW were evaluated for seed yield in a field under rainfed condition without any supplementary irrigation. The best performing RIL, which performed better than the check varieties, was reevaluated for a further year under rainfed condition. The genotypic constitution of this superior low soil moisture tolerant individual RIL was determined by constructing its recombination map using genome-wide SNPs obtained through genotyping-by-sequencing. The RIL possesses the superior alleles of the genomic QTL region known to govern drought tolerance in chickpea. The phenotypic and genotypic characterization of RILs in our study identified a chickpea pre-breeding line that can be used as a genetic donor for developing drought-tolerant high-yielding chickpea varieties and our results provide an evidence that total root length to root dry weight ratio can be used as a quantitative trait for assessing drought tolerance.
期刊介绍:
The scope of the journal of Plant Molecular Biology Reporter has expanded to keep pace with new developments in molecular biology and the broad area of genomics. The journal now solicits papers covering myriad breakthrough technologies and discoveries in molecular biology, genomics, proteomics, metabolomics, and other ‘omics’, as well as bioinformatics.