通过引入弱化学异质性,构建多尺度残余奥氏体使贝氏体钢具有更好的机械性能

IF 8.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Changbo Liu, Dongyun Sun, Chen Chen, Bo Lv, Xin Wang, Zhinan Yang, Fucheng Zhang
{"title":"通过引入弱化学异质性,构建多尺度残余奥氏体使贝氏体钢具有更好的机械性能","authors":"Changbo Liu, Dongyun Sun, Chen Chen, Bo Lv, Xin Wang, Zhinan Yang, Fucheng Zhang","doi":"10.1080/21663831.2024.2366875","DOIUrl":null,"url":null,"abstract":"Overcoming the trade-off relationship between strength and ductility has always been a challenge. In this article, a neatly arranged ultrafine bainite that is composed of multi-scale retained auste...A strategy of weak chemical heterogeneity has been proposed in low-alloy steel, which effectively optimizes the microstructure and enhances the plasticity and toughness of steel.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"2017 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing multi-scale retained austenite makes bainitic steel better mechanical properties by introducing weak chemical heterogeneity\",\"authors\":\"Changbo Liu, Dongyun Sun, Chen Chen, Bo Lv, Xin Wang, Zhinan Yang, Fucheng Zhang\",\"doi\":\"10.1080/21663831.2024.2366875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Overcoming the trade-off relationship between strength and ductility has always been a challenge. In this article, a neatly arranged ultrafine bainite that is composed of multi-scale retained auste...A strategy of weak chemical heterogeneity has been proposed in low-alloy steel, which effectively optimizes the microstructure and enhances the plasticity and toughness of steel.\",\"PeriodicalId\":18291,\"journal\":{\"name\":\"Materials Research Letters\",\"volume\":\"2017 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/21663831.2024.2366875\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21663831.2024.2366875","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

克服强度和延展性之间的权衡关系一直是一项挑战。在本文中,一种由多尺度残留奥氏体组成的整齐排列的超细贝氏体...在低合金钢中提出了一种弱化学异质性策略,它能有效优化钢的微观结构,提高钢的塑性和韧性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing multi-scale retained austenite makes bainitic steel better mechanical properties by introducing weak chemical heterogeneity
Overcoming the trade-off relationship between strength and ductility has always been a challenge. In this article, a neatly arranged ultrafine bainite that is composed of multi-scale retained auste...A strategy of weak chemical heterogeneity has been proposed in low-alloy steel, which effectively optimizes the microstructure and enhances the plasticity and toughness of steel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Letters
Materials Research Letters Materials Science-General Materials Science
CiteScore
12.10
自引率
3.60%
发文量
98
审稿时长
3.3 months
期刊介绍: Materials Research Letters is a high impact, open access journal that focuses on the engineering and technology of materials, materials physics and chemistry, and novel and emergent materials. It supports the materials research community by publishing original and compelling research work. The journal provides fast communications on cutting-edge materials research findings, with a primary focus on advanced metallic materials and physical metallurgy. It also considers other materials such as intermetallics, ceramics, and nanocomposites. Materials Research Letters publishes papers with significant breakthroughs in materials science, including research on unprecedented mechanical and functional properties, mechanisms for processing and formation of novel microstructures (including nanostructures, heterostructures, and hierarchical structures), and the mechanisms, physics, and chemistry responsible for the observed mechanical and functional behaviors of advanced materials. The journal accepts original research articles, original letters, perspective pieces presenting provocative and visionary opinions and views, and brief overviews of critical issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信