Marjan Moghayedi, Elaheh K. Goharshadi, Kiarash Ghazvini, Laleh Ranjbaran
{"title":"评估银-氧化石墨烯纳米复合材料对大肠杆菌和胶质母细胞瘤癌细胞的细胞毒性","authors":"Marjan Moghayedi, Elaheh K. Goharshadi, Kiarash Ghazvini, Laleh Ranjbaran","doi":"10.1007/s13738-024-03013-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, we examined the toxicity of Ag-graphene oxide (GO) nanocomposites against both the Gram-negative bacterium <i>Escherichia coli</i> and Glioblastoma cancer cells (U87MG). Our findings reveal that Ag-GO possesses bactericidal properties, with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 160 µg/mL. The antibacterial efficacy of Ag-GO is contingent on contact time and concentration, making it a potential candidate for integration into materials designed to combat microbial infections. The bactericidal effect of Ag-GO can be attributed to the release of silver ions and the physical damage inflicted by the sharp edges of GO sheets. Furthermore, our study demonstrates that Ag-GO exhibits anticancer activity against U87MG cells, with an IC<sub>50</sub> value of 270 µg/mL. The mechanism underlying the anticancer activity of Ag-GO likely involves cell membrane disruption and apoptosis induction. These findings signify the promising medical and biological applications of Ag-graphene oxide nanocomposites.</p></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":"21 7","pages":"1817 - 1827"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of the cytotoxicity of silver-graphene oxide nanocomposites on Escherichia coli and glioblastoma cancer cells\",\"authors\":\"Marjan Moghayedi, Elaheh K. Goharshadi, Kiarash Ghazvini, Laleh Ranjbaran\",\"doi\":\"10.1007/s13738-024-03013-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this research, we examined the toxicity of Ag-graphene oxide (GO) nanocomposites against both the Gram-negative bacterium <i>Escherichia coli</i> and Glioblastoma cancer cells (U87MG). Our findings reveal that Ag-GO possesses bactericidal properties, with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 160 µg/mL. The antibacterial efficacy of Ag-GO is contingent on contact time and concentration, making it a potential candidate for integration into materials designed to combat microbial infections. The bactericidal effect of Ag-GO can be attributed to the release of silver ions and the physical damage inflicted by the sharp edges of GO sheets. Furthermore, our study demonstrates that Ag-GO exhibits anticancer activity against U87MG cells, with an IC<sub>50</sub> value of 270 µg/mL. The mechanism underlying the anticancer activity of Ag-GO likely involves cell membrane disruption and apoptosis induction. These findings signify the promising medical and biological applications of Ag-graphene oxide nanocomposites.</p></div>\",\"PeriodicalId\":676,\"journal\":{\"name\":\"Journal of the Iranian Chemical Society\",\"volume\":\"21 7\",\"pages\":\"1817 - 1827\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Iranian Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13738-024-03013-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Iranian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13738-024-03013-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Assessment of the cytotoxicity of silver-graphene oxide nanocomposites on Escherichia coli and glioblastoma cancer cells
In this research, we examined the toxicity of Ag-graphene oxide (GO) nanocomposites against both the Gram-negative bacterium Escherichia coli and Glioblastoma cancer cells (U87MG). Our findings reveal that Ag-GO possesses bactericidal properties, with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 160 µg/mL. The antibacterial efficacy of Ag-GO is contingent on contact time and concentration, making it a potential candidate for integration into materials designed to combat microbial infections. The bactericidal effect of Ag-GO can be attributed to the release of silver ions and the physical damage inflicted by the sharp edges of GO sheets. Furthermore, our study demonstrates that Ag-GO exhibits anticancer activity against U87MG cells, with an IC50 value of 270 µg/mL. The mechanism underlying the anticancer activity of Ag-GO likely involves cell membrane disruption and apoptosis induction. These findings signify the promising medical and biological applications of Ag-graphene oxide nanocomposites.
期刊介绍:
JICS is an international journal covering general fields of chemistry. JICS welcomes high quality original papers in English dealing with experimental, theoretical and applied research related to all branches of chemistry. These include the fields of analytical, inorganic, organic and physical chemistry as well as the chemical biology area. Review articles discussing specific areas of chemistry of current chemical or biological importance are also published. JICS ensures visibility of your research results to a worldwide audience in science. You are kindly invited to submit your manuscript to the Editor-in-Chief or Regional Editor. All contributions in the form of original papers or short communications will be peer reviewed and published free of charge after acceptance.