特征 2 中普菲斯特倍数的各向同性指数

IF 0.7 2区 数学 Q2 MATHEMATICS
Nico Lorenz , Kristýna Zemková
{"title":"特征 2 中普菲斯特倍数的各向同性指数","authors":"Nico Lorenz ,&nbsp;Kristýna Zemková","doi":"10.1016/j.jpaa.2024.107759","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>F</em> be a field of characteristic 2, <em>π</em> an <em>n</em>-fold bilinear Pfister form over <em>F</em> and <em>φ</em> an arbitrary quadratic form over <em>F</em>. In this note, we investigate Witt index, defect, total isotropy index and higher isotropy indices of <em>φ</em> and <span><math><mi>π</mi><mo>⊗</mo><mi>φ</mi></math></span> and prove relations among the indices of these two forms over certain field extensions.</p></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"228 12","pages":"Article 107759"},"PeriodicalIF":0.7000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022404924001567/pdfft?md5=4a793c50fe87144e70295cee7055ed3c&pid=1-s2.0-S0022404924001567-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Isotropy indices of Pfister multiples in characteristic 2\",\"authors\":\"Nico Lorenz ,&nbsp;Kristýna Zemková\",\"doi\":\"10.1016/j.jpaa.2024.107759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>F</em> be a field of characteristic 2, <em>π</em> an <em>n</em>-fold bilinear Pfister form over <em>F</em> and <em>φ</em> an arbitrary quadratic form over <em>F</em>. In this note, we investigate Witt index, defect, total isotropy index and higher isotropy indices of <em>φ</em> and <span><math><mi>π</mi><mo>⊗</mo><mi>φ</mi></math></span> and prove relations among the indices of these two forms over certain field extensions.</p></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"228 12\",\"pages\":\"Article 107759\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001567/pdfft?md5=4a793c50fe87144e70295cee7055ed3c&pid=1-s2.0-S0022404924001567-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001567\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001567","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设是一个特征为 2 的域,一个在上的-倍双线性普菲斯特形式和一个在上的任意二次形式。 在本注释中,我们研究了和的维特指数、缺陷、总各向同性指数和高各向同性指数,并证明了这两个形式在某些域扩展上的指数之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isotropy indices of Pfister multiples in characteristic 2

Let F be a field of characteristic 2, π an n-fold bilinear Pfister form over F and φ an arbitrary quadratic form over F. In this note, we investigate Witt index, defect, total isotropy index and higher isotropy indices of φ and πφ and prove relations among the indices of these two forms over certain field extensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信