Xiyu Zhao, Yuqi Han, Xiangwen Miao, Xingmei You, Cheng Cao
{"title":"用于灵敏和选择性检测 Cu2+ 和 Fe3+ 的煤衍生荧光碳量子点","authors":"Xiyu Zhao, Yuqi Han, Xiangwen Miao, Xingmei You, Cheng Cao","doi":"10.1007/s42823-024-00763-9","DOIUrl":null,"url":null,"abstract":"<div><p>A simple and effective method was developed to prepare fluorescent carbon quantum dots (CQDs) for the detection of Fe<sup>3+</sup> and Cu<sup>2+</sup> in aqueous solution. The water-soluble CQDs with the diameter around 2–5 nm were synthesized using anthracite coal as the precursor. In addition, the as-prepared CQDs exhibits sensitive detection properties for Fe<sup>3+</sup> and Cu<sup>2+</sup> metal cations with a detection limit of 18.4 nM and 15.6 nM, respectively, indicating that the coal-derived CQDs sensor is superior for heavy metal recognition and environmental monitoring.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 9","pages":"2369 - 2376"},"PeriodicalIF":5.5000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coal-derived fluorescent carbon quantum dots for sensitive and selective detection of Cu2+ and Fe3+\",\"authors\":\"Xiyu Zhao, Yuqi Han, Xiangwen Miao, Xingmei You, Cheng Cao\",\"doi\":\"10.1007/s42823-024-00763-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A simple and effective method was developed to prepare fluorescent carbon quantum dots (CQDs) for the detection of Fe<sup>3+</sup> and Cu<sup>2+</sup> in aqueous solution. The water-soluble CQDs with the diameter around 2–5 nm were synthesized using anthracite coal as the precursor. In addition, the as-prepared CQDs exhibits sensitive detection properties for Fe<sup>3+</sup> and Cu<sup>2+</sup> metal cations with a detection limit of 18.4 nM and 15.6 nM, respectively, indicating that the coal-derived CQDs sensor is superior for heavy metal recognition and environmental monitoring.</p></div>\",\"PeriodicalId\":506,\"journal\":{\"name\":\"Carbon Letters\",\"volume\":\"34 9\",\"pages\":\"2369 - 2376\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42823-024-00763-9\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-024-00763-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Coal-derived fluorescent carbon quantum dots for sensitive and selective detection of Cu2+ and Fe3+
A simple and effective method was developed to prepare fluorescent carbon quantum dots (CQDs) for the detection of Fe3+ and Cu2+ in aqueous solution. The water-soluble CQDs with the diameter around 2–5 nm were synthesized using anthracite coal as the precursor. In addition, the as-prepared CQDs exhibits sensitive detection properties for Fe3+ and Cu2+ metal cations with a detection limit of 18.4 nM and 15.6 nM, respectively, indicating that the coal-derived CQDs sensor is superior for heavy metal recognition and environmental monitoring.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.