Linac_Gen:整合机器学习和粒子在胞方法,增强费米实验室的光束动力学

Abhishek Pathak
{"title":"Linac_Gen:整合机器学习和粒子在胞方法,增强费米实验室的光束动力学","authors":"Abhishek Pathak","doi":"arxiv-2406.16630","DOIUrl":null,"url":null,"abstract":"Here, we introduce Linac_Gen, a tool developed at Fermilab, which combines\nmachine learning algorithms with Particle-in-Cell methods to advance beam\ndynamics in linacs. Linac_Gen employs techniques such as Random Forest, Genetic\nAlgorithms, Support Vector Machines, and Neural Networks, achieving a tenfold\nincrease in speed for phase-space matching in linacs over traditional methods\nthrough the use of genetic algorithms. Crucially, Linac_Gen's adept handling of\n3D field maps elevates the precision and realism in simulating beam\ninstabilities and resonances, marking a key advancement in the field.\nBenchmarked against established codes, Linac_Gen demonstrates not only improved\nefficiency and precision in beam dynamics studies but also in the design and\noptimization of linac systems, as evidenced in its application to Fermilab's\nPIP-II linac project. This work represents a notable advancement in accelerator\nphysics, marrying ML with PIC methods to set new standards for efficiency and\naccuracy in accelerator design and research. Linac_Gen exemplifies a novel\napproach in accelerator technology, offering substantial improvements in both\ntheoretical and practical aspects of beam dynamics.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linac_Gen: integrating machine learning and particle-in-cell methods for enhanced beam dynamics at Fermilab\",\"authors\":\"Abhishek Pathak\",\"doi\":\"arxiv-2406.16630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, we introduce Linac_Gen, a tool developed at Fermilab, which combines\\nmachine learning algorithms with Particle-in-Cell methods to advance beam\\ndynamics in linacs. Linac_Gen employs techniques such as Random Forest, Genetic\\nAlgorithms, Support Vector Machines, and Neural Networks, achieving a tenfold\\nincrease in speed for phase-space matching in linacs over traditional methods\\nthrough the use of genetic algorithms. Crucially, Linac_Gen's adept handling of\\n3D field maps elevates the precision and realism in simulating beam\\ninstabilities and resonances, marking a key advancement in the field.\\nBenchmarked against established codes, Linac_Gen demonstrates not only improved\\nefficiency and precision in beam dynamics studies but also in the design and\\noptimization of linac systems, as evidenced in its application to Fermilab's\\nPIP-II linac project. This work represents a notable advancement in accelerator\\nphysics, marrying ML with PIC methods to set new standards for efficiency and\\naccuracy in accelerator design and research. Linac_Gen exemplifies a novel\\napproach in accelerator technology, offering substantial improvements in both\\ntheoretical and practical aspects of beam dynamics.\",\"PeriodicalId\":501318,\"journal\":{\"name\":\"arXiv - PHYS - Accelerator Physics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Accelerator Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.16630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.16630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这里,我们介绍费米实验室开发的一种工具--Linac_Gen,它将机器学习算法与 "粒子入室 "方法结合起来,推动了线性加速器中光束动力学的发展。Linac_Gen采用了随机森林(Random Forest)、遗传算法(GeneticAlgorithms)、支持向量机(Support Vector Machines)和神经网络(Neural Networks)等技术,通过使用遗传算法,使在直子中进行相空间匹配的速度比传统方法提高了十倍。最重要的是,Linac_Gen 对三维场图的熟练处理提高了模拟束稳定性和共振的精度和真实性,标志着这一领域的关键进步。与已有的代码相比,Linac_Gen 不仅在束动力学研究方面提高了效率和精度,而且在直列加速器系统的设计和优化方面也有所改进,它在费米实验室 PIP-II 直列加速器项目中的应用就证明了这一点。这项工作代表了加速器物理学的显著进步,它将 ML 与 PIC 方法结合起来,为加速器设计和研究的效率和精度设定了新标准。Linac_Gen 是加速器技术中一种新方法的典范,在束流动力学的理论和实践方面都有很大改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linac_Gen: integrating machine learning and particle-in-cell methods for enhanced beam dynamics at Fermilab
Here, we introduce Linac_Gen, a tool developed at Fermilab, which combines machine learning algorithms with Particle-in-Cell methods to advance beam dynamics in linacs. Linac_Gen employs techniques such as Random Forest, Genetic Algorithms, Support Vector Machines, and Neural Networks, achieving a tenfold increase in speed for phase-space matching in linacs over traditional methods through the use of genetic algorithms. Crucially, Linac_Gen's adept handling of 3D field maps elevates the precision and realism in simulating beam instabilities and resonances, marking a key advancement in the field. Benchmarked against established codes, Linac_Gen demonstrates not only improved efficiency and precision in beam dynamics studies but also in the design and optimization of linac systems, as evidenced in its application to Fermilab's PIP-II linac project. This work represents a notable advancement in accelerator physics, marrying ML with PIC methods to set new standards for efficiency and accuracy in accelerator design and research. Linac_Gen exemplifies a novel approach in accelerator technology, offering substantial improvements in both theoretical and practical aspects of beam dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信