{"title":"用于民用飞机环境控制系统(ECS)的三轮和分轮空气循环系统的热性能","authors":"","doi":"10.1016/j.ijrefrig.2024.06.021","DOIUrl":null,"url":null,"abstract":"<div><p>The conventional approach of regulating cabin temperature and pressure on aircraft is to utilize engine-bleed air through an environmental control system (ECS). The extraction of bleed air from the engine leads to a decrease in thrust and an increase in drag on the ECS ram air duct, resulting in higher fuel consumption. Consequently, the ECS transitioned from being engine-powered to being electrically powered. In this study, the thermodynamic characteristics of three-wheel and split-wheel air cycle systems (ACSs) with a high-pressure water separation system (HPWS) were investigated by developing a parameter decomposition model and an iterative algorithm using MATLAB for a state-of-the-art electrically driven ECS (EECS) on the Boeing 787 Dreamliner. The efficiency of the ACS was assessed by establishing analytical correlations for the coefficient of performance (COP) using relevant literature on endo-reversible thermodynamic model (ETM). By employing these analytical correlations, the thermal performance of both ACSs can be accurately predicted without the need for system modeling and simulation, considering variations in the input variables and operating conditions, such as the temperatures of fresh air and ram air, the ratio of the mass flow rates of ram air and fresh air, and component parameters, including the efficiencies of the primary and secondary heat exchangers and the pressure ratios of the fan and compressor. The implementation of a split-wheel ACS instead of three-wheel ACS in the Boeing 787 EECS led to an improvement in the COP from 0.31 to 0.43, and also resulted in a reduction of 14.35 % in the input power.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal performance of three-wheel and split-wheel air cycle systems for a civil aircraft environmental control system (ECS)\",\"authors\":\"\",\"doi\":\"10.1016/j.ijrefrig.2024.06.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The conventional approach of regulating cabin temperature and pressure on aircraft is to utilize engine-bleed air through an environmental control system (ECS). The extraction of bleed air from the engine leads to a decrease in thrust and an increase in drag on the ECS ram air duct, resulting in higher fuel consumption. Consequently, the ECS transitioned from being engine-powered to being electrically powered. In this study, the thermodynamic characteristics of three-wheel and split-wheel air cycle systems (ACSs) with a high-pressure water separation system (HPWS) were investigated by developing a parameter decomposition model and an iterative algorithm using MATLAB for a state-of-the-art electrically driven ECS (EECS) on the Boeing 787 Dreamliner. The efficiency of the ACS was assessed by establishing analytical correlations for the coefficient of performance (COP) using relevant literature on endo-reversible thermodynamic model (ETM). By employing these analytical correlations, the thermal performance of both ACSs can be accurately predicted without the need for system modeling and simulation, considering variations in the input variables and operating conditions, such as the temperatures of fresh air and ram air, the ratio of the mass flow rates of ram air and fresh air, and component parameters, including the efficiencies of the primary and secondary heat exchangers and the pressure ratios of the fan and compressor. The implementation of a split-wheel ACS instead of three-wheel ACS in the Boeing 787 EECS led to an improvement in the COP from 0.31 to 0.43, and also resulted in a reduction of 14.35 % in the input power.</p></div>\",\"PeriodicalId\":14274,\"journal\":{\"name\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140700724002251\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724002251","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Thermal performance of three-wheel and split-wheel air cycle systems for a civil aircraft environmental control system (ECS)
The conventional approach of regulating cabin temperature and pressure on aircraft is to utilize engine-bleed air through an environmental control system (ECS). The extraction of bleed air from the engine leads to a decrease in thrust and an increase in drag on the ECS ram air duct, resulting in higher fuel consumption. Consequently, the ECS transitioned from being engine-powered to being electrically powered. In this study, the thermodynamic characteristics of three-wheel and split-wheel air cycle systems (ACSs) with a high-pressure water separation system (HPWS) were investigated by developing a parameter decomposition model and an iterative algorithm using MATLAB for a state-of-the-art electrically driven ECS (EECS) on the Boeing 787 Dreamliner. The efficiency of the ACS was assessed by establishing analytical correlations for the coefficient of performance (COP) using relevant literature on endo-reversible thermodynamic model (ETM). By employing these analytical correlations, the thermal performance of both ACSs can be accurately predicted without the need for system modeling and simulation, considering variations in the input variables and operating conditions, such as the temperatures of fresh air and ram air, the ratio of the mass flow rates of ram air and fresh air, and component parameters, including the efficiencies of the primary and secondary heat exchangers and the pressure ratios of the fan and compressor. The implementation of a split-wheel ACS instead of three-wheel ACS in the Boeing 787 EECS led to an improvement in the COP from 0.31 to 0.43, and also resulted in a reduction of 14.35 % in the input power.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.