卡诺群上有界(1,σ)-加权(q,p)-失真同构的失真系数的下半连续性

IF 0.5 Q3 MATHEMATICS
S. K. Vodopyanov, D. A. Sboev
{"title":"卡诺群上有界(1,σ)-加权(q,p)-失真同构的失真系数的下半连续性","authors":"S. K. Vodopyanov, D. A. Sboev","doi":"10.3103/s1066369x24700208","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper we study the locally uniform convergence of homeomorphisms with bounded <span>\\((1,\\sigma )\\)</span>-weighted <span>\\((q,p)\\)</span>-distortion to a limit homeomorphism. Under some additional conditions we prove that the limit homeomorphism is a mapping with bounded <span>\\((1,\\sigma )\\)</span>-weighted <span>\\((q,p)\\)</span>-distortion. Moreover, we obtain the property of lower semicontinuity of distortion characteristics of homeomorphisms.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"40 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lower Semicontinuity of Distortion Coefficients for Homeomorphisms of Bounded (1, σ)-Weighted (q, p)-Distortion on Carnot Groups\",\"authors\":\"S. K. Vodopyanov, D. A. Sboev\",\"doi\":\"10.3103/s1066369x24700208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In this paper we study the locally uniform convergence of homeomorphisms with bounded <span>\\\\((1,\\\\sigma )\\\\)</span>-weighted <span>\\\\((q,p)\\\\)</span>-distortion to a limit homeomorphism. Under some additional conditions we prove that the limit homeomorphism is a mapping with bounded <span>\\\\((1,\\\\sigma )\\\\)</span>-weighted <span>\\\\((q,p)\\\\)</span>-distortion. Moreover, we obtain the property of lower semicontinuity of distortion characteristics of homeomorphisms.</p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x24700208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x24700208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在本文中,我们研究了有界((1,\sigma )\)-加权((q,p)\)-失真到极限同构的同构的局部均匀收敛性。在一些附加条件下,我们证明了极限同构是一个有界的((1,\sigma))-加权的((q,p))-失真映射。此外,我们还得到了同态变形失真特征的下半连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower Semicontinuity of Distortion Coefficients for Homeomorphisms of Bounded (1, σ)-Weighted (q, p)-Distortion on Carnot Groups

Abstract

In this paper we study the locally uniform convergence of homeomorphisms with bounded \((1,\sigma )\)-weighted \((q,p)\)-distortion to a limit homeomorphism. Under some additional conditions we prove that the limit homeomorphism is a mapping with bounded \((1,\sigma )\)-weighted \((q,p)\)-distortion. Moreover, we obtain the property of lower semicontinuity of distortion characteristics of homeomorphisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信